Open Set Domain Adaptation via Joint Alignment and Category Separation
Prevalent domain adaptation approaches are suitable for a close-set scenario where the source domain and the target domain are assumed to share the same data categories. However, this assumption is often violated in real-world conditions where the target domain usually contains samples of categories...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2023-09, Vol.34 (9), p.6186-6199 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6199 |
---|---|
container_issue | 9 |
container_start_page | 6186 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 34 |
creator | Liu, Jieyan Jing, Mengmeng Li, Jingjing Lu, Ke Shen, Heng Tao |
description | Prevalent domain adaptation approaches are suitable for a close-set scenario where the source domain and the target domain are assumed to share the same data categories. However, this assumption is often violated in real-world conditions where the target domain usually contains samples of categories that are not presented in the source domain. This setting is termed as open set domain adaptation (OSDA). Most existing domain adaptation approaches do not work well in this situation. In this article, we propose an effective method, named joint alignment and category separation (JACS), for OSDA. Specifically, JACS learns a latent shared space, where the marginal and conditional divergence of feature distributions for commonly known classes across domains is alleviated (Joint Alignment), the distribution discrepancy between the known classes and the unknown class is enlarged, and the distance between different known classes is also maximized (Category Separation). These two aspects are unified into an objective to reinforce the optimization of each part simultaneously. The classifier is achieved based on the learned new feature representations by minimizing the structural risk in the reproducing kernel Hilbert space. Extensive experiment results verify that our method outperforms other state-of-the-art approaches on several benchmark datasets. |
doi_str_mv | 10.1109/TNNLS.2021.3134673 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2614230221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9662283</ieee_id><sourcerecordid>2614230221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-bb85689613dd15945585a6252016fe4f69cab4908c98adeeb10efc5eab06173e3</originalsourceid><addsrcrecordid>eNpdkEtLAzEQx4MottR-AQVZ8OJlaybZZJNjqdYHpT20greQ3Z0tKd2H-xD67d0-7MG5zMD8_sPwI-QW6AiA6qfVfD5bjhhlMOLAAxnyC9JnIJnPuFKX5zn86pFhXW9oV5IKGehr0uOBDkAw3SfTRYm5t8TGey4y63JvnNiysY0rcu_HWe-jcHnjjbdunWfYTTZPvIltcF1Uuy5W2urA3pCr1G5rHJ76gHxOX1aTN3-2eH2fjGd-zAU0fhQpIZWWwJMEhA6EUMJKJhgFmWKQSh3bKNBUxVrZBDECimks0EZUQsiRD8jj8W5ZFd8t1o3JXB3jdmtzLNraMAkB45Qx6NCHf-imaKu8-84wJXQIVISqo9iRiquiritMTVm5zFY7A9TsRZuDaLMXbU6iu9D96XQbZZicI39aO-DuCDhEPK-1lIwpzn8BIIx_5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859710578</pqid></control><display><type>article</type><title>Open Set Domain Adaptation via Joint Alignment and Category Separation</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Jieyan ; Jing, Mengmeng ; Li, Jingjing ; Lu, Ke ; Shen, Heng Tao</creator><creatorcontrib>Liu, Jieyan ; Jing, Mengmeng ; Li, Jingjing ; Lu, Ke ; Shen, Heng Tao</creatorcontrib><description>Prevalent domain adaptation approaches are suitable for a close-set scenario where the source domain and the target domain are assumed to share the same data categories. However, this assumption is often violated in real-world conditions where the target domain usually contains samples of categories that are not presented in the source domain. This setting is termed as open set domain adaptation (OSDA). Most existing domain adaptation approaches do not work well in this situation. In this article, we propose an effective method, named joint alignment and category separation (JACS), for OSDA. Specifically, JACS learns a latent shared space, where the marginal and conditional divergence of feature distributions for commonly known classes across domains is alleviated (Joint Alignment), the distribution discrepancy between the known classes and the unknown class is enlarged, and the distance between different known classes is also maximized (Category Separation). These two aspects are unified into an objective to reinforce the optimization of each part simultaneously. The classifier is achieved based on the learned new feature representations by minimizing the structural risk in the reproducing kernel Hilbert space. Extensive experiment results verify that our method outperforms other state-of-the-art approaches on several benchmark datasets.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2021.3134673</identifier><identifier>PMID: 34941529</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation ; Alignment ; Domain adaptation ; Hilbert space ; Kernel ; Measurement ; open set recognition ; Optimization ; Separation ; Support vector machines ; Target recognition ; Task analysis ; Training ; transfer learning</subject><ispartof>IEEE transaction on neural networks and learning systems, 2023-09, Vol.34 (9), p.6186-6199</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-bb85689613dd15945585a6252016fe4f69cab4908c98adeeb10efc5eab06173e3</citedby><cites>FETCH-LOGICAL-c351t-bb85689613dd15945585a6252016fe4f69cab4908c98adeeb10efc5eab06173e3</cites><orcidid>0000-0002-0693-2197 ; 0000-0002-5504-2529 ; 0000-0002-3456-4993 ; 0000-0002-2999-2088</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9662283$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9662283$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34941529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Jieyan</creatorcontrib><creatorcontrib>Jing, Mengmeng</creatorcontrib><creatorcontrib>Li, Jingjing</creatorcontrib><creatorcontrib>Lu, Ke</creatorcontrib><creatorcontrib>Shen, Heng Tao</creatorcontrib><title>Open Set Domain Adaptation via Joint Alignment and Category Separation</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Prevalent domain adaptation approaches are suitable for a close-set scenario where the source domain and the target domain are assumed to share the same data categories. However, this assumption is often violated in real-world conditions where the target domain usually contains samples of categories that are not presented in the source domain. This setting is termed as open set domain adaptation (OSDA). Most existing domain adaptation approaches do not work well in this situation. In this article, we propose an effective method, named joint alignment and category separation (JACS), for OSDA. Specifically, JACS learns a latent shared space, where the marginal and conditional divergence of feature distributions for commonly known classes across domains is alleviated (Joint Alignment), the distribution discrepancy between the known classes and the unknown class is enlarged, and the distance between different known classes is also maximized (Category Separation). These two aspects are unified into an objective to reinforce the optimization of each part simultaneously. The classifier is achieved based on the learned new feature representations by minimizing the structural risk in the reproducing kernel Hilbert space. Extensive experiment results verify that our method outperforms other state-of-the-art approaches on several benchmark datasets.</description><subject>Adaptation</subject><subject>Alignment</subject><subject>Domain adaptation</subject><subject>Hilbert space</subject><subject>Kernel</subject><subject>Measurement</subject><subject>open set recognition</subject><subject>Optimization</subject><subject>Separation</subject><subject>Support vector machines</subject><subject>Target recognition</subject><subject>Task analysis</subject><subject>Training</subject><subject>transfer learning</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLAzEQx4MottR-AQVZ8OJlaybZZJNjqdYHpT20greQ3Z0tKd2H-xD67d0-7MG5zMD8_sPwI-QW6AiA6qfVfD5bjhhlMOLAAxnyC9JnIJnPuFKX5zn86pFhXW9oV5IKGehr0uOBDkAw3SfTRYm5t8TGey4y63JvnNiysY0rcu_HWe-jcHnjjbdunWfYTTZPvIltcF1Uuy5W2urA3pCr1G5rHJ76gHxOX1aTN3-2eH2fjGd-zAU0fhQpIZWWwJMEhA6EUMJKJhgFmWKQSh3bKNBUxVrZBDECimks0EZUQsiRD8jj8W5ZFd8t1o3JXB3jdmtzLNraMAkB45Qx6NCHf-imaKu8-84wJXQIVISqo9iRiquiritMTVm5zFY7A9TsRZuDaLMXbU6iu9D96XQbZZicI39aO-DuCDhEPK-1lIwpzn8BIIx_5A</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Liu, Jieyan</creator><creator>Jing, Mengmeng</creator><creator>Li, Jingjing</creator><creator>Lu, Ke</creator><creator>Shen, Heng Tao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0693-2197</orcidid><orcidid>https://orcid.org/0000-0002-5504-2529</orcidid><orcidid>https://orcid.org/0000-0002-3456-4993</orcidid><orcidid>https://orcid.org/0000-0002-2999-2088</orcidid></search><sort><creationdate>20230901</creationdate><title>Open Set Domain Adaptation via Joint Alignment and Category Separation</title><author>Liu, Jieyan ; Jing, Mengmeng ; Li, Jingjing ; Lu, Ke ; Shen, Heng Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-bb85689613dd15945585a6252016fe4f69cab4908c98adeeb10efc5eab06173e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation</topic><topic>Alignment</topic><topic>Domain adaptation</topic><topic>Hilbert space</topic><topic>Kernel</topic><topic>Measurement</topic><topic>open set recognition</topic><topic>Optimization</topic><topic>Separation</topic><topic>Support vector machines</topic><topic>Target recognition</topic><topic>Task analysis</topic><topic>Training</topic><topic>transfer learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jieyan</creatorcontrib><creatorcontrib>Jing, Mengmeng</creatorcontrib><creatorcontrib>Li, Jingjing</creatorcontrib><creatorcontrib>Lu, Ke</creatorcontrib><creatorcontrib>Shen, Heng Tao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Jieyan</au><au>Jing, Mengmeng</au><au>Li, Jingjing</au><au>Lu, Ke</au><au>Shen, Heng Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Open Set Domain Adaptation via Joint Alignment and Category Separation</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>34</volume><issue>9</issue><spage>6186</spage><epage>6199</epage><pages>6186-6199</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Prevalent domain adaptation approaches are suitable for a close-set scenario where the source domain and the target domain are assumed to share the same data categories. However, this assumption is often violated in real-world conditions where the target domain usually contains samples of categories that are not presented in the source domain. This setting is termed as open set domain adaptation (OSDA). Most existing domain adaptation approaches do not work well in this situation. In this article, we propose an effective method, named joint alignment and category separation (JACS), for OSDA. Specifically, JACS learns a latent shared space, where the marginal and conditional divergence of feature distributions for commonly known classes across domains is alleviated (Joint Alignment), the distribution discrepancy between the known classes and the unknown class is enlarged, and the distance between different known classes is also maximized (Category Separation). These two aspects are unified into an objective to reinforce the optimization of each part simultaneously. The classifier is achieved based on the learned new feature representations by minimizing the structural risk in the reproducing kernel Hilbert space. Extensive experiment results verify that our method outperforms other state-of-the-art approaches on several benchmark datasets.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34941529</pmid><doi>10.1109/TNNLS.2021.3134673</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0693-2197</orcidid><orcidid>https://orcid.org/0000-0002-5504-2529</orcidid><orcidid>https://orcid.org/0000-0002-3456-4993</orcidid><orcidid>https://orcid.org/0000-0002-2999-2088</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2023-09, Vol.34 (9), p.6186-6199 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_proquest_miscellaneous_2614230221 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation Alignment Domain adaptation Hilbert space Kernel Measurement open set recognition Optimization Separation Support vector machines Target recognition Task analysis Training transfer learning |
title | Open Set Domain Adaptation via Joint Alignment and Category Separation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T19%3A46%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Open%20Set%20Domain%20Adaptation%20via%20Joint%20Alignment%20and%20Category%20Separation&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Liu,%20Jieyan&rft.date=2023-09-01&rft.volume=34&rft.issue=9&rft.spage=6186&rft.epage=6199&rft.pages=6186-6199&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2021.3134673&rft_dat=%3Cproquest_RIE%3E2614230221%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859710578&rft_id=info:pmid/34941529&rft_ieee_id=9662283&rfr_iscdi=true |