Transition Metal and N Doping on AlP Monolayers for Bifunctional Oxygen Electrocatalysts: Density Functional Theory Study Assisted by Machine Learning Description
It is vital to search for highly efficient bifunctional oxygen evolution/reduction reaction (OER/ORR) electrocatalysts for sustainable and renewable clean energy. Herein, we propose a single transition-metal (TM)-based defective AlP system to validate bifunctional oxygen electrocatalysis by using th...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2022-01, Vol.14 (1), p.1249-1259 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1259 |
---|---|
container_issue | 1 |
container_start_page | 1249 |
container_title | ACS applied materials & interfaces |
container_volume | 14 |
creator | Liu, Xuefei Zhang, Yuefei Wang, Wentao Chen, Yuanzheng Xiao, Wenjun Liu, Tianyun Zhong, Zhen Luo, Zijiang Ding, Zhao Zhang, Zhaofu |
description | It is vital to search for highly efficient bifunctional oxygen evolution/reduction reaction (OER/ORR) electrocatalysts for sustainable and renewable clean energy. Herein, we propose a single transition-metal (TM)-based defective AlP system to validate bifunctional oxygen electrocatalysis by using the density functional theory (DFT) method. We found that the catalytic activity is enhanced by substituting two P atoms with two N atoms in the Al vacancy of the TM-anchored AlP monolayer. Specifically, the overpotential of OER(ORR) in Co- and Ni-based defective AlP systems is found to be 0.38 (0.25 V) and 0.23 V (0.39 V), respectively, showing excellent bifunctional catalytic performance. The results are further presented by establishing the volcano plots and contour maps according to the scaling relation of the Gibbs free-energy change of *OH, *O, and *OOH intermediates. The d-band center and the product of the number of d-orbital electrons and electronegativity of the TM atom are the ideal descriptors for this system. To investigate the activity origin of the OER/ORR process, we performed the machine learning (ML) algorithm. The result indicates that the number of TM-d electrons (
), the radius of TM atoms (
), and the charge transfer of TM atoms (
) are the three primary descriptors characterizing the adsorption behavior. Our results can provide a theoretical guidance for designing highly efficient bifunctional electrocatalysts and pave a way for the DFT-ML hybrid method in catalysis research. |
doi_str_mv | 10.1021/acsami.1c22309 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2614229519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2614229519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-105bc2ed188902d535b5b8ea6ea55666b2500beb092d334140227d9e362730873</originalsourceid><addsrcrecordid>eNpFkcFuEzEQhi0EoqX0yhH5yCXBHtubNbfQtFApoUik55XXO2mNNnbw7Erd1-FJ2VXScprR6Pv_OXyMfZBiLgXIz86T24e59ABK2FfsXFqtZyUYeP2ya33G3hH9FqJQIMxbdqa01RKUPWd_t9lFCl1IkW-wcy13seE_-CodQnzg43XZ_uSbFFPrBszEdynzr2HXRz9lRv7uaXjAyK9b9F1O3o0dA3X0ha9wKh74zX92-4gpD_xX1zcDXxIF6rDh9cA3zj-GiHyNLsfp8QrJ53CYcu_Zm51rCS9P84Ld31xvr77P1nffbq-W65kHa7qZFKb2gI0sSyugMcrUpi7RFeiMKYqiBiNEjbWw0CilpRYAi8aiKmChRLlQF-zTsfeQ058eqav2gTy2rYuYeqqgkBrGV9KO6PyI-pyIMu6qQw57l4dKimryUh29VCcvY-Djqbuv99i84M8i1D9rtYww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2614229519</pqid></control><display><type>article</type><title>Transition Metal and N Doping on AlP Monolayers for Bifunctional Oxygen Electrocatalysts: Density Functional Theory Study Assisted by Machine Learning Description</title><source>ACS Publications</source><creator>Liu, Xuefei ; Zhang, Yuefei ; Wang, Wentao ; Chen, Yuanzheng ; Xiao, Wenjun ; Liu, Tianyun ; Zhong, Zhen ; Luo, Zijiang ; Ding, Zhao ; Zhang, Zhaofu</creator><creatorcontrib>Liu, Xuefei ; Zhang, Yuefei ; Wang, Wentao ; Chen, Yuanzheng ; Xiao, Wenjun ; Liu, Tianyun ; Zhong, Zhen ; Luo, Zijiang ; Ding, Zhao ; Zhang, Zhaofu</creatorcontrib><description>It is vital to search for highly efficient bifunctional oxygen evolution/reduction reaction (OER/ORR) electrocatalysts for sustainable and renewable clean energy. Herein, we propose a single transition-metal (TM)-based defective AlP system to validate bifunctional oxygen electrocatalysis by using the density functional theory (DFT) method. We found that the catalytic activity is enhanced by substituting two P atoms with two N atoms in the Al vacancy of the TM-anchored AlP monolayer. Specifically, the overpotential of OER(ORR) in Co- and Ni-based defective AlP systems is found to be 0.38 (0.25 V) and 0.23 V (0.39 V), respectively, showing excellent bifunctional catalytic performance. The results are further presented by establishing the volcano plots and contour maps according to the scaling relation of the Gibbs free-energy change of *OH, *O, and *OOH intermediates. The d-band center and the product of the number of d-orbital electrons and electronegativity of the TM atom are the ideal descriptors for this system. To investigate the activity origin of the OER/ORR process, we performed the machine learning (ML) algorithm. The result indicates that the number of TM-d electrons (
), the radius of TM atoms (
), and the charge transfer of TM atoms (
) are the three primary descriptors characterizing the adsorption behavior. Our results can provide a theoretical guidance for designing highly efficient bifunctional electrocatalysts and pave a way for the DFT-ML hybrid method in catalysis research.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c22309</identifier><identifier>PMID: 34941239</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS applied materials & interfaces, 2022-01, Vol.14 (1), p.1249-1259</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-105bc2ed188902d535b5b8ea6ea55666b2500beb092d334140227d9e362730873</citedby><cites>FETCH-LOGICAL-c295t-105bc2ed188902d535b5b8ea6ea55666b2500beb092d334140227d9e362730873</cites><orcidid>0000-0003-4308-3515 ; 0000-0003-0154-474X ; 0000-0002-1406-1256</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2752,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34941239$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xuefei</creatorcontrib><creatorcontrib>Zhang, Yuefei</creatorcontrib><creatorcontrib>Wang, Wentao</creatorcontrib><creatorcontrib>Chen, Yuanzheng</creatorcontrib><creatorcontrib>Xiao, Wenjun</creatorcontrib><creatorcontrib>Liu, Tianyun</creatorcontrib><creatorcontrib>Zhong, Zhen</creatorcontrib><creatorcontrib>Luo, Zijiang</creatorcontrib><creatorcontrib>Ding, Zhao</creatorcontrib><creatorcontrib>Zhang, Zhaofu</creatorcontrib><title>Transition Metal and N Doping on AlP Monolayers for Bifunctional Oxygen Electrocatalysts: Density Functional Theory Study Assisted by Machine Learning Description</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl Mater Interfaces</addtitle><description>It is vital to search for highly efficient bifunctional oxygen evolution/reduction reaction (OER/ORR) electrocatalysts for sustainable and renewable clean energy. Herein, we propose a single transition-metal (TM)-based defective AlP system to validate bifunctional oxygen electrocatalysis by using the density functional theory (DFT) method. We found that the catalytic activity is enhanced by substituting two P atoms with two N atoms in the Al vacancy of the TM-anchored AlP monolayer. Specifically, the overpotential of OER(ORR) in Co- and Ni-based defective AlP systems is found to be 0.38 (0.25 V) and 0.23 V (0.39 V), respectively, showing excellent bifunctional catalytic performance. The results are further presented by establishing the volcano plots and contour maps according to the scaling relation of the Gibbs free-energy change of *OH, *O, and *OOH intermediates. The d-band center and the product of the number of d-orbital electrons and electronegativity of the TM atom are the ideal descriptors for this system. To investigate the activity origin of the OER/ORR process, we performed the machine learning (ML) algorithm. The result indicates that the number of TM-d electrons (
), the radius of TM atoms (
), and the charge transfer of TM atoms (
) are the three primary descriptors characterizing the adsorption behavior. Our results can provide a theoretical guidance for designing highly efficient bifunctional electrocatalysts and pave a way for the DFT-ML hybrid method in catalysis research.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkcFuEzEQhi0EoqX0yhH5yCXBHtubNbfQtFApoUik55XXO2mNNnbw7Erd1-FJ2VXScprR6Pv_OXyMfZBiLgXIz86T24e59ABK2FfsXFqtZyUYeP2ya33G3hH9FqJQIMxbdqa01RKUPWd_t9lFCl1IkW-wcy13seE_-CodQnzg43XZ_uSbFFPrBszEdynzr2HXRz9lRv7uaXjAyK9b9F1O3o0dA3X0ha9wKh74zX92-4gpD_xX1zcDXxIF6rDh9cA3zj-GiHyNLsfp8QrJ53CYcu_Zm51rCS9P84Ld31xvr77P1nffbq-W65kHa7qZFKb2gI0sSyugMcrUpi7RFeiMKYqiBiNEjbWw0CilpRYAi8aiKmChRLlQF-zTsfeQ058eqav2gTy2rYuYeqqgkBrGV9KO6PyI-pyIMu6qQw57l4dKimryUh29VCcvY-Djqbuv99i84M8i1D9rtYww</recordid><startdate>20220112</startdate><enddate>20220112</enddate><creator>Liu, Xuefei</creator><creator>Zhang, Yuefei</creator><creator>Wang, Wentao</creator><creator>Chen, Yuanzheng</creator><creator>Xiao, Wenjun</creator><creator>Liu, Tianyun</creator><creator>Zhong, Zhen</creator><creator>Luo, Zijiang</creator><creator>Ding, Zhao</creator><creator>Zhang, Zhaofu</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4308-3515</orcidid><orcidid>https://orcid.org/0000-0003-0154-474X</orcidid><orcidid>https://orcid.org/0000-0002-1406-1256</orcidid></search><sort><creationdate>20220112</creationdate><title>Transition Metal and N Doping on AlP Monolayers for Bifunctional Oxygen Electrocatalysts: Density Functional Theory Study Assisted by Machine Learning Description</title><author>Liu, Xuefei ; Zhang, Yuefei ; Wang, Wentao ; Chen, Yuanzheng ; Xiao, Wenjun ; Liu, Tianyun ; Zhong, Zhen ; Luo, Zijiang ; Ding, Zhao ; Zhang, Zhaofu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-105bc2ed188902d535b5b8ea6ea55666b2500beb092d334140227d9e362730873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xuefei</creatorcontrib><creatorcontrib>Zhang, Yuefei</creatorcontrib><creatorcontrib>Wang, Wentao</creatorcontrib><creatorcontrib>Chen, Yuanzheng</creatorcontrib><creatorcontrib>Xiao, Wenjun</creatorcontrib><creatorcontrib>Liu, Tianyun</creatorcontrib><creatorcontrib>Zhong, Zhen</creatorcontrib><creatorcontrib>Luo, Zijiang</creatorcontrib><creatorcontrib>Ding, Zhao</creatorcontrib><creatorcontrib>Zhang, Zhaofu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xuefei</au><au>Zhang, Yuefei</au><au>Wang, Wentao</au><au>Chen, Yuanzheng</au><au>Xiao, Wenjun</au><au>Liu, Tianyun</au><au>Zhong, Zhen</au><au>Luo, Zijiang</au><au>Ding, Zhao</au><au>Zhang, Zhaofu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transition Metal and N Doping on AlP Monolayers for Bifunctional Oxygen Electrocatalysts: Density Functional Theory Study Assisted by Machine Learning Description</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2022-01-12</date><risdate>2022</risdate><volume>14</volume><issue>1</issue><spage>1249</spage><epage>1259</epage><pages>1249-1259</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>It is vital to search for highly efficient bifunctional oxygen evolution/reduction reaction (OER/ORR) electrocatalysts for sustainable and renewable clean energy. Herein, we propose a single transition-metal (TM)-based defective AlP system to validate bifunctional oxygen electrocatalysis by using the density functional theory (DFT) method. We found that the catalytic activity is enhanced by substituting two P atoms with two N atoms in the Al vacancy of the TM-anchored AlP monolayer. Specifically, the overpotential of OER(ORR) in Co- and Ni-based defective AlP systems is found to be 0.38 (0.25 V) and 0.23 V (0.39 V), respectively, showing excellent bifunctional catalytic performance. The results are further presented by establishing the volcano plots and contour maps according to the scaling relation of the Gibbs free-energy change of *OH, *O, and *OOH intermediates. The d-band center and the product of the number of d-orbital electrons and electronegativity of the TM atom are the ideal descriptors for this system. To investigate the activity origin of the OER/ORR process, we performed the machine learning (ML) algorithm. The result indicates that the number of TM-d electrons (
), the radius of TM atoms (
), and the charge transfer of TM atoms (
) are the three primary descriptors characterizing the adsorption behavior. Our results can provide a theoretical guidance for designing highly efficient bifunctional electrocatalysts and pave a way for the DFT-ML hybrid method in catalysis research.</abstract><cop>United States</cop><pmid>34941239</pmid><doi>10.1021/acsami.1c22309</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4308-3515</orcidid><orcidid>https://orcid.org/0000-0003-0154-474X</orcidid><orcidid>https://orcid.org/0000-0002-1406-1256</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2022-01, Vol.14 (1), p.1249-1259 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2614229519 |
source | ACS Publications |
title | Transition Metal and N Doping on AlP Monolayers for Bifunctional Oxygen Electrocatalysts: Density Functional Theory Study Assisted by Machine Learning Description |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A03%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transition%20Metal%20and%20N%20Doping%20on%20AlP%20Monolayers%20for%20Bifunctional%20Oxygen%20Electrocatalysts:%20Density%20Functional%20Theory%20Study%20Assisted%20by%20Machine%20Learning%20Description&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Liu,%20Xuefei&rft.date=2022-01-12&rft.volume=14&rft.issue=1&rft.spage=1249&rft.epage=1259&rft.pages=1249-1259&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c22309&rft_dat=%3Cproquest_cross%3E2614229519%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2614229519&rft_id=info:pmid/34941239&rfr_iscdi=true |