Transition Metal and N Doping on AlP Monolayers for Bifunctional Oxygen Electrocatalysts: Density Functional Theory Study Assisted by Machine Learning Description

It is vital to search for highly efficient bifunctional oxygen evolution/reduction reaction (OER/ORR) electrocatalysts for sustainable and renewable clean energy. Herein, we propose a single transition-metal (TM)-based defective AlP system to validate bifunctional oxygen electrocatalysis by using th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-01, Vol.14 (1), p.1249-1259
Hauptverfasser: Liu, Xuefei, Zhang, Yuefei, Wang, Wentao, Chen, Yuanzheng, Xiao, Wenjun, Liu, Tianyun, Zhong, Zhen, Luo, Zijiang, Ding, Zhao, Zhang, Zhaofu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1259
container_issue 1
container_start_page 1249
container_title ACS applied materials & interfaces
container_volume 14
creator Liu, Xuefei
Zhang, Yuefei
Wang, Wentao
Chen, Yuanzheng
Xiao, Wenjun
Liu, Tianyun
Zhong, Zhen
Luo, Zijiang
Ding, Zhao
Zhang, Zhaofu
description It is vital to search for highly efficient bifunctional oxygen evolution/reduction reaction (OER/ORR) electrocatalysts for sustainable and renewable clean energy. Herein, we propose a single transition-metal (TM)-based defective AlP system to validate bifunctional oxygen electrocatalysis by using the density functional theory (DFT) method. We found that the catalytic activity is enhanced by substituting two P atoms with two N atoms in the Al vacancy of the TM-anchored AlP monolayer. Specifically, the overpotential of OER(ORR) in Co- and Ni-based defective AlP systems is found to be 0.38 (0.25 V) and 0.23 V (0.39 V), respectively, showing excellent bifunctional catalytic performance. The results are further presented by establishing the volcano plots and contour maps according to the scaling relation of the Gibbs free-energy change of *OH, *O, and *OOH intermediates. The d-band center and the product of the number of d-orbital electrons and electronegativity of the TM atom are the ideal descriptors for this system. To investigate the activity origin of the OER/ORR process, we performed the machine learning (ML) algorithm. The result indicates that the number of TM-d electrons ( ), the radius of TM atoms ( ), and the charge transfer of TM atoms ( ) are the three primary descriptors characterizing the adsorption behavior. Our results can provide a theoretical guidance for designing highly efficient bifunctional electrocatalysts and pave a way for the DFT-ML hybrid method in catalysis research.
doi_str_mv 10.1021/acsami.1c22309
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2614229519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2614229519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-105bc2ed188902d535b5b8ea6ea55666b2500beb092d334140227d9e362730873</originalsourceid><addsrcrecordid>eNpFkcFuEzEQhi0EoqX0yhH5yCXBHtubNbfQtFApoUik55XXO2mNNnbw7Erd1-FJ2VXScprR6Pv_OXyMfZBiLgXIz86T24e59ABK2FfsXFqtZyUYeP2ya33G3hH9FqJQIMxbdqa01RKUPWd_t9lFCl1IkW-wcy13seE_-CodQnzg43XZ_uSbFFPrBszEdynzr2HXRz9lRv7uaXjAyK9b9F1O3o0dA3X0ha9wKh74zX92-4gpD_xX1zcDXxIF6rDh9cA3zj-GiHyNLsfp8QrJ53CYcu_Zm51rCS9P84Ld31xvr77P1nffbq-W65kHa7qZFKb2gI0sSyugMcrUpi7RFeiMKYqiBiNEjbWw0CilpRYAi8aiKmChRLlQF-zTsfeQ058eqav2gTy2rYuYeqqgkBrGV9KO6PyI-pyIMu6qQw57l4dKimryUh29VCcvY-Djqbuv99i84M8i1D9rtYww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2614229519</pqid></control><display><type>article</type><title>Transition Metal and N Doping on AlP Monolayers for Bifunctional Oxygen Electrocatalysts: Density Functional Theory Study Assisted by Machine Learning Description</title><source>ACS Publications</source><creator>Liu, Xuefei ; Zhang, Yuefei ; Wang, Wentao ; Chen, Yuanzheng ; Xiao, Wenjun ; Liu, Tianyun ; Zhong, Zhen ; Luo, Zijiang ; Ding, Zhao ; Zhang, Zhaofu</creator><creatorcontrib>Liu, Xuefei ; Zhang, Yuefei ; Wang, Wentao ; Chen, Yuanzheng ; Xiao, Wenjun ; Liu, Tianyun ; Zhong, Zhen ; Luo, Zijiang ; Ding, Zhao ; Zhang, Zhaofu</creatorcontrib><description>It is vital to search for highly efficient bifunctional oxygen evolution/reduction reaction (OER/ORR) electrocatalysts for sustainable and renewable clean energy. Herein, we propose a single transition-metal (TM)-based defective AlP system to validate bifunctional oxygen electrocatalysis by using the density functional theory (DFT) method. We found that the catalytic activity is enhanced by substituting two P atoms with two N atoms in the Al vacancy of the TM-anchored AlP monolayer. Specifically, the overpotential of OER(ORR) in Co- and Ni-based defective AlP systems is found to be 0.38 (0.25 V) and 0.23 V (0.39 V), respectively, showing excellent bifunctional catalytic performance. The results are further presented by establishing the volcano plots and contour maps according to the scaling relation of the Gibbs free-energy change of *OH, *O, and *OOH intermediates. The d-band center and the product of the number of d-orbital electrons and electronegativity of the TM atom are the ideal descriptors for this system. To investigate the activity origin of the OER/ORR process, we performed the machine learning (ML) algorithm. The result indicates that the number of TM-d electrons ( ), the radius of TM atoms ( ), and the charge transfer of TM atoms ( ) are the three primary descriptors characterizing the adsorption behavior. Our results can provide a theoretical guidance for designing highly efficient bifunctional electrocatalysts and pave a way for the DFT-ML hybrid method in catalysis research.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c22309</identifier><identifier>PMID: 34941239</identifier><language>eng</language><publisher>United States</publisher><ispartof>ACS applied materials &amp; interfaces, 2022-01, Vol.14 (1), p.1249-1259</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-105bc2ed188902d535b5b8ea6ea55666b2500beb092d334140227d9e362730873</citedby><cites>FETCH-LOGICAL-c295t-105bc2ed188902d535b5b8ea6ea55666b2500beb092d334140227d9e362730873</cites><orcidid>0000-0003-4308-3515 ; 0000-0003-0154-474X ; 0000-0002-1406-1256</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2752,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34941239$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xuefei</creatorcontrib><creatorcontrib>Zhang, Yuefei</creatorcontrib><creatorcontrib>Wang, Wentao</creatorcontrib><creatorcontrib>Chen, Yuanzheng</creatorcontrib><creatorcontrib>Xiao, Wenjun</creatorcontrib><creatorcontrib>Liu, Tianyun</creatorcontrib><creatorcontrib>Zhong, Zhen</creatorcontrib><creatorcontrib>Luo, Zijiang</creatorcontrib><creatorcontrib>Ding, Zhao</creatorcontrib><creatorcontrib>Zhang, Zhaofu</creatorcontrib><title>Transition Metal and N Doping on AlP Monolayers for Bifunctional Oxygen Electrocatalysts: Density Functional Theory Study Assisted by Machine Learning Description</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl Mater Interfaces</addtitle><description>It is vital to search for highly efficient bifunctional oxygen evolution/reduction reaction (OER/ORR) electrocatalysts for sustainable and renewable clean energy. Herein, we propose a single transition-metal (TM)-based defective AlP system to validate bifunctional oxygen electrocatalysis by using the density functional theory (DFT) method. We found that the catalytic activity is enhanced by substituting two P atoms with two N atoms in the Al vacancy of the TM-anchored AlP monolayer. Specifically, the overpotential of OER(ORR) in Co- and Ni-based defective AlP systems is found to be 0.38 (0.25 V) and 0.23 V (0.39 V), respectively, showing excellent bifunctional catalytic performance. The results are further presented by establishing the volcano plots and contour maps according to the scaling relation of the Gibbs free-energy change of *OH, *O, and *OOH intermediates. The d-band center and the product of the number of d-orbital electrons and electronegativity of the TM atom are the ideal descriptors for this system. To investigate the activity origin of the OER/ORR process, we performed the machine learning (ML) algorithm. The result indicates that the number of TM-d electrons ( ), the radius of TM atoms ( ), and the charge transfer of TM atoms ( ) are the three primary descriptors characterizing the adsorption behavior. Our results can provide a theoretical guidance for designing highly efficient bifunctional electrocatalysts and pave a way for the DFT-ML hybrid method in catalysis research.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkcFuEzEQhi0EoqX0yhH5yCXBHtubNbfQtFApoUik55XXO2mNNnbw7Erd1-FJ2VXScprR6Pv_OXyMfZBiLgXIz86T24e59ABK2FfsXFqtZyUYeP2ya33G3hH9FqJQIMxbdqa01RKUPWd_t9lFCl1IkW-wcy13seE_-CodQnzg43XZ_uSbFFPrBszEdynzr2HXRz9lRv7uaXjAyK9b9F1O3o0dA3X0ha9wKh74zX92-4gpD_xX1zcDXxIF6rDh9cA3zj-GiHyNLsfp8QrJ53CYcu_Zm51rCS9P84Ld31xvr77P1nffbq-W65kHa7qZFKb2gI0sSyugMcrUpi7RFeiMKYqiBiNEjbWw0CilpRYAi8aiKmChRLlQF-zTsfeQ058eqav2gTy2rYuYeqqgkBrGV9KO6PyI-pyIMu6qQw57l4dKimryUh29VCcvY-Djqbuv99i84M8i1D9rtYww</recordid><startdate>20220112</startdate><enddate>20220112</enddate><creator>Liu, Xuefei</creator><creator>Zhang, Yuefei</creator><creator>Wang, Wentao</creator><creator>Chen, Yuanzheng</creator><creator>Xiao, Wenjun</creator><creator>Liu, Tianyun</creator><creator>Zhong, Zhen</creator><creator>Luo, Zijiang</creator><creator>Ding, Zhao</creator><creator>Zhang, Zhaofu</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4308-3515</orcidid><orcidid>https://orcid.org/0000-0003-0154-474X</orcidid><orcidid>https://orcid.org/0000-0002-1406-1256</orcidid></search><sort><creationdate>20220112</creationdate><title>Transition Metal and N Doping on AlP Monolayers for Bifunctional Oxygen Electrocatalysts: Density Functional Theory Study Assisted by Machine Learning Description</title><author>Liu, Xuefei ; Zhang, Yuefei ; Wang, Wentao ; Chen, Yuanzheng ; Xiao, Wenjun ; Liu, Tianyun ; Zhong, Zhen ; Luo, Zijiang ; Ding, Zhao ; Zhang, Zhaofu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-105bc2ed188902d535b5b8ea6ea55666b2500beb092d334140227d9e362730873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xuefei</creatorcontrib><creatorcontrib>Zhang, Yuefei</creatorcontrib><creatorcontrib>Wang, Wentao</creatorcontrib><creatorcontrib>Chen, Yuanzheng</creatorcontrib><creatorcontrib>Xiao, Wenjun</creatorcontrib><creatorcontrib>Liu, Tianyun</creatorcontrib><creatorcontrib>Zhong, Zhen</creatorcontrib><creatorcontrib>Luo, Zijiang</creatorcontrib><creatorcontrib>Ding, Zhao</creatorcontrib><creatorcontrib>Zhang, Zhaofu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xuefei</au><au>Zhang, Yuefei</au><au>Wang, Wentao</au><au>Chen, Yuanzheng</au><au>Xiao, Wenjun</au><au>Liu, Tianyun</au><au>Zhong, Zhen</au><au>Luo, Zijiang</au><au>Ding, Zhao</au><au>Zhang, Zhaofu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transition Metal and N Doping on AlP Monolayers for Bifunctional Oxygen Electrocatalysts: Density Functional Theory Study Assisted by Machine Learning Description</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl Mater Interfaces</addtitle><date>2022-01-12</date><risdate>2022</risdate><volume>14</volume><issue>1</issue><spage>1249</spage><epage>1259</epage><pages>1249-1259</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>It is vital to search for highly efficient bifunctional oxygen evolution/reduction reaction (OER/ORR) electrocatalysts for sustainable and renewable clean energy. Herein, we propose a single transition-metal (TM)-based defective AlP system to validate bifunctional oxygen electrocatalysis by using the density functional theory (DFT) method. We found that the catalytic activity is enhanced by substituting two P atoms with two N atoms in the Al vacancy of the TM-anchored AlP monolayer. Specifically, the overpotential of OER(ORR) in Co- and Ni-based defective AlP systems is found to be 0.38 (0.25 V) and 0.23 V (0.39 V), respectively, showing excellent bifunctional catalytic performance. The results are further presented by establishing the volcano plots and contour maps according to the scaling relation of the Gibbs free-energy change of *OH, *O, and *OOH intermediates. The d-band center and the product of the number of d-orbital electrons and electronegativity of the TM atom are the ideal descriptors for this system. To investigate the activity origin of the OER/ORR process, we performed the machine learning (ML) algorithm. The result indicates that the number of TM-d electrons ( ), the radius of TM atoms ( ), and the charge transfer of TM atoms ( ) are the three primary descriptors characterizing the adsorption behavior. Our results can provide a theoretical guidance for designing highly efficient bifunctional electrocatalysts and pave a way for the DFT-ML hybrid method in catalysis research.</abstract><cop>United States</cop><pmid>34941239</pmid><doi>10.1021/acsami.1c22309</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4308-3515</orcidid><orcidid>https://orcid.org/0000-0003-0154-474X</orcidid><orcidid>https://orcid.org/0000-0002-1406-1256</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2022-01, Vol.14 (1), p.1249-1259
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2614229519
source ACS Publications
title Transition Metal and N Doping on AlP Monolayers for Bifunctional Oxygen Electrocatalysts: Density Functional Theory Study Assisted by Machine Learning Description
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A03%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transition%20Metal%20and%20N%20Doping%20on%20AlP%20Monolayers%20for%20Bifunctional%20Oxygen%20Electrocatalysts:%20Density%20Functional%20Theory%20Study%20Assisted%20by%20Machine%20Learning%20Description&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Liu,%20Xuefei&rft.date=2022-01-12&rft.volume=14&rft.issue=1&rft.spage=1249&rft.epage=1259&rft.pages=1249-1259&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c22309&rft_dat=%3Cproquest_cross%3E2614229519%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2614229519&rft_id=info:pmid/34941239&rfr_iscdi=true