Grain splitting is a mechanism for grain coarsening in colloidal polycrystals

In established theories of grain coarsening, grains disappear either by shrinking or by rotating as a rigid object to coalesce with an adjacent grain. Here we report a third mechanism for grain coarsening, in which a grain splits apart into two regions that rotate in opposite directions to match two...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2021-11, Vol.104 (5), p.L052601-L052601, Article L052601
Hauptverfasser: Barth, Anna R, Martinez, Maya H, Payne, Cora E, Couto, Chris G, Quintas, Izabela J, Soncharoen, Inq, Brown, Nina M, Weissler, Eli J, Gerbode, Sharon J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page L052601
container_issue 5
container_start_page L052601
container_title Physical review. E
container_volume 104
creator Barth, Anna R
Martinez, Maya H
Payne, Cora E
Couto, Chris G
Quintas, Izabela J
Soncharoen, Inq
Brown, Nina M
Weissler, Eli J
Gerbode, Sharon J
description In established theories of grain coarsening, grains disappear either by shrinking or by rotating as a rigid object to coalesce with an adjacent grain. Here we report a third mechanism for grain coarsening, in which a grain splits apart into two regions that rotate in opposite directions to match two adjacent grains' orientations. We experimentally observe both conventional grain rotation and grain splitting in two-dimensional colloidal polycrystals. We find that grain splitting occurs via independently rotating "granules" whose shapes are determined by the underlying triangular lattices of the two merging crystal grains. These granules are so small that existing continuum theories of grain boundary energy are inapplicable, so we introduce a hard sphere model for the free energy of a colloidal polycrystal. We find that, during splitting, the system overcomes a free energy barrier before ultimately reaching a lower free energy when splitting is complete. Using simulated splitting events and a simple scaling prediction, we find that the barrier to grain splitting decreases as grain size decreases. Consequently, grain splitting is likely to play an important role in polycrystals with small grains. This discovery suggests that mesoscale models of grain coarsening may offer better predictions in the nanocrystalline regime by including grain splitting.
doi_str_mv 10.1103/PhysRevE.104.L052601
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2614227026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2614227026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-ad65e6b0ee0016545f4ee4e38825d06c853faa8f717a101ceace07c0d4b09f0c3</originalsourceid><addsrcrecordid>eNo9kFtLw0AQhRdRbKn9ByJ59CV19prkUUqtQkURfQ7bzaRd2VzcTYX8e9Pa9unMDN-ZGQ4htxRmlAJ_eN_24QN_FzMKYrYCyRTQCzJmIoEYQPLLcy3kiExD-AYAqiBLKLsmIy4ywVTGxuR16bWto9A623W23kQ2RDqq0Gx1bUMVlY2PNgfENNoHrA_MvnOusYV2Udu43vg-dNqFG3JVDoLTo07I19Pic_4cr96WL_PHVWw4JF2sCyVRrQFx_5QUshSIAnmaMlmAMqnkpdZpmdBEU6AGtUFIDBRiDVkJhk_I_f_e1jc_OwxdXtlg0DldY7MLOVNUMJYAUwMq_lHjmxA8lnnrbaV9n1PI91nmpyyHgciPWQ62u-OF3brC4mw6Jcf_AHW7cho</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2614227026</pqid></control><display><type>article</type><title>Grain splitting is a mechanism for grain coarsening in colloidal polycrystals</title><source>American Physical Society Journals</source><creator>Barth, Anna R ; Martinez, Maya H ; Payne, Cora E ; Couto, Chris G ; Quintas, Izabela J ; Soncharoen, Inq ; Brown, Nina M ; Weissler, Eli J ; Gerbode, Sharon J</creator><creatorcontrib>Barth, Anna R ; Martinez, Maya H ; Payne, Cora E ; Couto, Chris G ; Quintas, Izabela J ; Soncharoen, Inq ; Brown, Nina M ; Weissler, Eli J ; Gerbode, Sharon J</creatorcontrib><description>In established theories of grain coarsening, grains disappear either by shrinking or by rotating as a rigid object to coalesce with an adjacent grain. Here we report a third mechanism for grain coarsening, in which a grain splits apart into two regions that rotate in opposite directions to match two adjacent grains' orientations. We experimentally observe both conventional grain rotation and grain splitting in two-dimensional colloidal polycrystals. We find that grain splitting occurs via independently rotating "granules" whose shapes are determined by the underlying triangular lattices of the two merging crystal grains. These granules are so small that existing continuum theories of grain boundary energy are inapplicable, so we introduce a hard sphere model for the free energy of a colloidal polycrystal. We find that, during splitting, the system overcomes a free energy barrier before ultimately reaching a lower free energy when splitting is complete. Using simulated splitting events and a simple scaling prediction, we find that the barrier to grain splitting decreases as grain size decreases. Consequently, grain splitting is likely to play an important role in polycrystals with small grains. This discovery suggests that mesoscale models of grain coarsening may offer better predictions in the nanocrystalline regime by including grain splitting.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.104.L052601</identifier><identifier>PMID: 34942692</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2021-11, Vol.104 (5), p.L052601-L052601, Article L052601</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-ad65e6b0ee0016545f4ee4e38825d06c853faa8f717a101ceace07c0d4b09f0c3</citedby><cites>FETCH-LOGICAL-c307t-ad65e6b0ee0016545f4ee4e38825d06c853faa8f717a101ceace07c0d4b09f0c3</cites><orcidid>0000-0002-0730-9196 ; 0000-0001-9733-8427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34942692$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barth, Anna R</creatorcontrib><creatorcontrib>Martinez, Maya H</creatorcontrib><creatorcontrib>Payne, Cora E</creatorcontrib><creatorcontrib>Couto, Chris G</creatorcontrib><creatorcontrib>Quintas, Izabela J</creatorcontrib><creatorcontrib>Soncharoen, Inq</creatorcontrib><creatorcontrib>Brown, Nina M</creatorcontrib><creatorcontrib>Weissler, Eli J</creatorcontrib><creatorcontrib>Gerbode, Sharon J</creatorcontrib><title>Grain splitting is a mechanism for grain coarsening in colloidal polycrystals</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>In established theories of grain coarsening, grains disappear either by shrinking or by rotating as a rigid object to coalesce with an adjacent grain. Here we report a third mechanism for grain coarsening, in which a grain splits apart into two regions that rotate in opposite directions to match two adjacent grains' orientations. We experimentally observe both conventional grain rotation and grain splitting in two-dimensional colloidal polycrystals. We find that grain splitting occurs via independently rotating "granules" whose shapes are determined by the underlying triangular lattices of the two merging crystal grains. These granules are so small that existing continuum theories of grain boundary energy are inapplicable, so we introduce a hard sphere model for the free energy of a colloidal polycrystal. We find that, during splitting, the system overcomes a free energy barrier before ultimately reaching a lower free energy when splitting is complete. Using simulated splitting events and a simple scaling prediction, we find that the barrier to grain splitting decreases as grain size decreases. Consequently, grain splitting is likely to play an important role in polycrystals with small grains. This discovery suggests that mesoscale models of grain coarsening may offer better predictions in the nanocrystalline regime by including grain splitting.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kFtLw0AQhRdRbKn9ByJ59CV19prkUUqtQkURfQ7bzaRd2VzcTYX8e9Pa9unMDN-ZGQ4htxRmlAJ_eN_24QN_FzMKYrYCyRTQCzJmIoEYQPLLcy3kiExD-AYAqiBLKLsmIy4ywVTGxuR16bWto9A623W23kQ2RDqq0Gx1bUMVlY2PNgfENNoHrA_MvnOusYV2Udu43vg-dNqFG3JVDoLTo07I19Pic_4cr96WL_PHVWw4JF2sCyVRrQFx_5QUshSIAnmaMlmAMqnkpdZpmdBEU6AGtUFIDBRiDVkJhk_I_f_e1jc_OwxdXtlg0DldY7MLOVNUMJYAUwMq_lHjmxA8lnnrbaV9n1PI91nmpyyHgciPWQ62u-OF3brC4mw6Jcf_AHW7cho</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Barth, Anna R</creator><creator>Martinez, Maya H</creator><creator>Payne, Cora E</creator><creator>Couto, Chris G</creator><creator>Quintas, Izabela J</creator><creator>Soncharoen, Inq</creator><creator>Brown, Nina M</creator><creator>Weissler, Eli J</creator><creator>Gerbode, Sharon J</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0730-9196</orcidid><orcidid>https://orcid.org/0000-0001-9733-8427</orcidid></search><sort><creationdate>20211101</creationdate><title>Grain splitting is a mechanism for grain coarsening in colloidal polycrystals</title><author>Barth, Anna R ; Martinez, Maya H ; Payne, Cora E ; Couto, Chris G ; Quintas, Izabela J ; Soncharoen, Inq ; Brown, Nina M ; Weissler, Eli J ; Gerbode, Sharon J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-ad65e6b0ee0016545f4ee4e38825d06c853faa8f717a101ceace07c0d4b09f0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barth, Anna R</creatorcontrib><creatorcontrib>Martinez, Maya H</creatorcontrib><creatorcontrib>Payne, Cora E</creatorcontrib><creatorcontrib>Couto, Chris G</creatorcontrib><creatorcontrib>Quintas, Izabela J</creatorcontrib><creatorcontrib>Soncharoen, Inq</creatorcontrib><creatorcontrib>Brown, Nina M</creatorcontrib><creatorcontrib>Weissler, Eli J</creatorcontrib><creatorcontrib>Gerbode, Sharon J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barth, Anna R</au><au>Martinez, Maya H</au><au>Payne, Cora E</au><au>Couto, Chris G</au><au>Quintas, Izabela J</au><au>Soncharoen, Inq</au><au>Brown, Nina M</au><au>Weissler, Eli J</au><au>Gerbode, Sharon J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grain splitting is a mechanism for grain coarsening in colloidal polycrystals</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>104</volume><issue>5</issue><spage>L052601</spage><epage>L052601</epage><pages>L052601-L052601</pages><artnum>L052601</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>In established theories of grain coarsening, grains disappear either by shrinking or by rotating as a rigid object to coalesce with an adjacent grain. Here we report a third mechanism for grain coarsening, in which a grain splits apart into two regions that rotate in opposite directions to match two adjacent grains' orientations. We experimentally observe both conventional grain rotation and grain splitting in two-dimensional colloidal polycrystals. We find that grain splitting occurs via independently rotating "granules" whose shapes are determined by the underlying triangular lattices of the two merging crystal grains. These granules are so small that existing continuum theories of grain boundary energy are inapplicable, so we introduce a hard sphere model for the free energy of a colloidal polycrystal. We find that, during splitting, the system overcomes a free energy barrier before ultimately reaching a lower free energy when splitting is complete. Using simulated splitting events and a simple scaling prediction, we find that the barrier to grain splitting decreases as grain size decreases. Consequently, grain splitting is likely to play an important role in polycrystals with small grains. This discovery suggests that mesoscale models of grain coarsening may offer better predictions in the nanocrystalline regime by including grain splitting.</abstract><cop>United States</cop><pmid>34942692</pmid><doi>10.1103/PhysRevE.104.L052601</doi><orcidid>https://orcid.org/0000-0002-0730-9196</orcidid><orcidid>https://orcid.org/0000-0001-9733-8427</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2021-11, Vol.104 (5), p.L052601-L052601, Article L052601
issn 2470-0045
2470-0053
language eng
recordid cdi_proquest_miscellaneous_2614227026
source American Physical Society Journals
title Grain splitting is a mechanism for grain coarsening in colloidal polycrystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T14%3A44%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grain%20splitting%20is%20a%20mechanism%20for%20grain%20coarsening%20in%20colloidal%20polycrystals&rft.jtitle=Physical%20review.%20E&rft.au=Barth,%20Anna%20R&rft.date=2021-11-01&rft.volume=104&rft.issue=5&rft.spage=L052601&rft.epage=L052601&rft.pages=L052601-L052601&rft.artnum=L052601&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.104.L052601&rft_dat=%3Cproquest_cross%3E2614227026%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2614227026&rft_id=info:pmid/34942692&rfr_iscdi=true