An optimized approach for estimating benzene in ambient air within an air quality monitoring network

•A mathematical model elucidated the relationship between benzene and other air pollutants and meteorological parameters.•Optimized approach for predicting benzene levels within AQM was validated.•Additional data on benzene levels in poorly monitored areas within AQM were provided.•Representativenes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental sciences (China) 2022-01, Vol.111, p.164-174
Hauptverfasser: Galán-Madruga, David, García-Cambero, Jesús P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 174
container_issue
container_start_page 164
container_title Journal of environmental sciences (China)
container_volume 111
creator Galán-Madruga, David
García-Cambero, Jesús P.
description •A mathematical model elucidated the relationship between benzene and other air pollutants and meteorological parameters.•Optimized approach for predicting benzene levels within AQM was validated.•Additional data on benzene levels in poorly monitored areas within AQM were provided.•Representativeness of fixed benzene monitoring sites within AQM was assessed. Benzene is a carcinogenic air pollutant for which European legislation has set an annual limit and criteria for the number of fixed monitoring sites within air quality networks (AQMN). However, due to the limited number of fixed sites for benzene measurement, exposure data are lacking. Considering the relationship between benzene levels and other variables monitored within an AQMN, such as NO2, O3, temperature, solar radiation, and accumulated precipitation, this study proposes an approach for estimating benzene air concentrations from the related variables. Using the data of the aforementioned variables from 23 fixed stations during 2016-2017, the proposed approach was able to forecast benzene concentration for 2018 with high confidence, providing enriched data on benzene exposure and its trends. Moreover, the spatial distribution of the estimated versus the most representative benzene levels was quite similar. Finally, an artificial neural network identified the most representative fixed benzene monitoring sites within the AQMN. [Display omitted]
doi_str_mv 10.1016/j.jes.2021.03.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2614226601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1001074221000887</els_id><sourcerecordid>2614226601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-e3ac8b1af878eba040815b93fb20f70f61abb720ff7424f6094776bd6bbf7adf3</originalsourceid><addsrcrecordid>eNp9kEtPBCEQhInR-P4BXgxHLzM2A8PsxpMxvhITL3omMNMo6w6swGr018u66tETTaeq0vURcsSgZsDk6ayeYaobaFgNvAZoN8gum3STquMNbJYZgFXQiWaH7KU0AwDRQrtNdriYiikXcpcM556GRXaj-8SB6sUiBt0_UxsixVTWOjv_RA36T_RInad6NA59ptpF-u7y82rlv3-vSz13-YOOwbsc4srnMb-H-HJAtqyeJzz8effJ49Xlw8VNdXd_fXtxflf1vOW5Qq77iWHalgpoNAiYsNZMuTUN2A6sZNqYrsy2VBJWwlR0nTSDNMZ2erB8n5ysc0uL12W5X40u9Tifa49hmVQjmWgaKYEVKVtL-xhSimjVIpa28UMxUCu4aqYKXLWCq4CrArd4jn_il2bE4c_xS7MIztYCLCXfHEaV-gKrx8FF7LMagvsn_gssTowG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2614226601</pqid></control><display><type>article</type><title>An optimized approach for estimating benzene in ambient air within an air quality monitoring network</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>Alma/SFX Local Collection</source><creator>Galán-Madruga, David ; García-Cambero, Jesús P.</creator><creatorcontrib>Galán-Madruga, David ; García-Cambero, Jesús P.</creatorcontrib><description>•A mathematical model elucidated the relationship between benzene and other air pollutants and meteorological parameters.•Optimized approach for predicting benzene levels within AQM was validated.•Additional data on benzene levels in poorly monitored areas within AQM were provided.•Representativeness of fixed benzene monitoring sites within AQM was assessed. Benzene is a carcinogenic air pollutant for which European legislation has set an annual limit and criteria for the number of fixed monitoring sites within air quality networks (AQMN). However, due to the limited number of fixed sites for benzene measurement, exposure data are lacking. Considering the relationship between benzene levels and other variables monitored within an AQMN, such as NO2, O3, temperature, solar radiation, and accumulated precipitation, this study proposes an approach for estimating benzene air concentrations from the related variables. Using the data of the aforementioned variables from 23 fixed stations during 2016-2017, the proposed approach was able to forecast benzene concentration for 2018 with high confidence, providing enriched data on benzene exposure and its trends. Moreover, the spatial distribution of the estimated versus the most representative benzene levels was quite similar. Finally, an artificial neural network identified the most representative fixed benzene monitoring sites within the AQMN. [Display omitted]</description><identifier>ISSN: 1001-0742</identifier><identifier>EISSN: 1878-7320</identifier><identifier>DOI: 10.1016/j.jes.2021.03.005</identifier><identifier>PMID: 34949346</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Air Pollutants - analysis ; Air Pollution - analysis ; Air quality network ; Ambient air ; Benzene ; Environmental Monitoring ; Meteorological variables ; NO2/O3 ratio ; Prediction model</subject><ispartof>Journal of environmental sciences (China), 2022-01, Vol.111, p.164-174</ispartof><rights>2021</rights><rights>Copyright © 2021. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-e3ac8b1af878eba040815b93fb20f70f61abb720ff7424f6094776bd6bbf7adf3</citedby><cites>FETCH-LOGICAL-c353t-e3ac8b1af878eba040815b93fb20f70f61abb720ff7424f6094776bd6bbf7adf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1001074221000887$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34949346$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Galán-Madruga, David</creatorcontrib><creatorcontrib>García-Cambero, Jesús P.</creatorcontrib><title>An optimized approach for estimating benzene in ambient air within an air quality monitoring network</title><title>Journal of environmental sciences (China)</title><addtitle>J Environ Sci (China)</addtitle><description>•A mathematical model elucidated the relationship between benzene and other air pollutants and meteorological parameters.•Optimized approach for predicting benzene levels within AQM was validated.•Additional data on benzene levels in poorly monitored areas within AQM were provided.•Representativeness of fixed benzene monitoring sites within AQM was assessed. Benzene is a carcinogenic air pollutant for which European legislation has set an annual limit and criteria for the number of fixed monitoring sites within air quality networks (AQMN). However, due to the limited number of fixed sites for benzene measurement, exposure data are lacking. Considering the relationship between benzene levels and other variables monitored within an AQMN, such as NO2, O3, temperature, solar radiation, and accumulated precipitation, this study proposes an approach for estimating benzene air concentrations from the related variables. Using the data of the aforementioned variables from 23 fixed stations during 2016-2017, the proposed approach was able to forecast benzene concentration for 2018 with high confidence, providing enriched data on benzene exposure and its trends. Moreover, the spatial distribution of the estimated versus the most representative benzene levels was quite similar. Finally, an artificial neural network identified the most representative fixed benzene monitoring sites within the AQMN. [Display omitted]</description><subject>Air Pollutants - analysis</subject><subject>Air Pollution - analysis</subject><subject>Air quality network</subject><subject>Ambient air</subject><subject>Benzene</subject><subject>Environmental Monitoring</subject><subject>Meteorological variables</subject><subject>NO2/O3 ratio</subject><subject>Prediction model</subject><issn>1001-0742</issn><issn>1878-7320</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtPBCEQhInR-P4BXgxHLzM2A8PsxpMxvhITL3omMNMo6w6swGr018u66tETTaeq0vURcsSgZsDk6ayeYaobaFgNvAZoN8gum3STquMNbJYZgFXQiWaH7KU0AwDRQrtNdriYiikXcpcM556GRXaj-8SB6sUiBt0_UxsixVTWOjv_RA36T_RInad6NA59ptpF-u7y82rlv3-vSz13-YOOwbsc4srnMb-H-HJAtqyeJzz8effJ49Xlw8VNdXd_fXtxflf1vOW5Qq77iWHalgpoNAiYsNZMuTUN2A6sZNqYrsy2VBJWwlR0nTSDNMZ2erB8n5ysc0uL12W5X40u9Tifa49hmVQjmWgaKYEVKVtL-xhSimjVIpa28UMxUCu4aqYKXLWCq4CrArd4jn_il2bE4c_xS7MIztYCLCXfHEaV-gKrx8FF7LMagvsn_gssTowG</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Galán-Madruga, David</creator><creator>García-Cambero, Jesús P.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20220101</creationdate><title>An optimized approach for estimating benzene in ambient air within an air quality monitoring network</title><author>Galán-Madruga, David ; García-Cambero, Jesús P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-e3ac8b1af878eba040815b93fb20f70f61abb720ff7424f6094776bd6bbf7adf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air Pollutants - analysis</topic><topic>Air Pollution - analysis</topic><topic>Air quality network</topic><topic>Ambient air</topic><topic>Benzene</topic><topic>Environmental Monitoring</topic><topic>Meteorological variables</topic><topic>NO2/O3 ratio</topic><topic>Prediction model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galán-Madruga, David</creatorcontrib><creatorcontrib>García-Cambero, Jesús P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of environmental sciences (China)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galán-Madruga, David</au><au>García-Cambero, Jesús P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An optimized approach for estimating benzene in ambient air within an air quality monitoring network</atitle><jtitle>Journal of environmental sciences (China)</jtitle><addtitle>J Environ Sci (China)</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>111</volume><spage>164</spage><epage>174</epage><pages>164-174</pages><issn>1001-0742</issn><eissn>1878-7320</eissn><abstract>•A mathematical model elucidated the relationship between benzene and other air pollutants and meteorological parameters.•Optimized approach for predicting benzene levels within AQM was validated.•Additional data on benzene levels in poorly monitored areas within AQM were provided.•Representativeness of fixed benzene monitoring sites within AQM was assessed. Benzene is a carcinogenic air pollutant for which European legislation has set an annual limit and criteria for the number of fixed monitoring sites within air quality networks (AQMN). However, due to the limited number of fixed sites for benzene measurement, exposure data are lacking. Considering the relationship between benzene levels and other variables monitored within an AQMN, such as NO2, O3, temperature, solar radiation, and accumulated precipitation, this study proposes an approach for estimating benzene air concentrations from the related variables. Using the data of the aforementioned variables from 23 fixed stations during 2016-2017, the proposed approach was able to forecast benzene concentration for 2018 with high confidence, providing enriched data on benzene exposure and its trends. Moreover, the spatial distribution of the estimated versus the most representative benzene levels was quite similar. Finally, an artificial neural network identified the most representative fixed benzene monitoring sites within the AQMN. [Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>34949346</pmid><doi>10.1016/j.jes.2021.03.005</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1001-0742
ispartof Journal of environmental sciences (China), 2022-01, Vol.111, p.164-174
issn 1001-0742
1878-7320
language eng
recordid cdi_proquest_miscellaneous_2614226601
source MEDLINE; Elsevier ScienceDirect Journals; Alma/SFX Local Collection
subjects Air Pollutants - analysis
Air Pollution - analysis
Air quality network
Ambient air
Benzene
Environmental Monitoring
Meteorological variables
NO2/O3 ratio
Prediction model
title An optimized approach for estimating benzene in ambient air within an air quality monitoring network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A50%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20optimized%20approach%20for%20estimating%20benzene%20in%20ambient%20air%20within%20an%20air%20quality%20monitoring%20network&rft.jtitle=Journal%20of%20environmental%20sciences%20(China)&rft.au=Gal%C3%A1n-Madruga,%20David&rft.date=2022-01-01&rft.volume=111&rft.spage=164&rft.epage=174&rft.pages=164-174&rft.issn=1001-0742&rft.eissn=1878-7320&rft_id=info:doi/10.1016/j.jes.2021.03.005&rft_dat=%3Cproquest_cross%3E2614226601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2614226601&rft_id=info:pmid/34949346&rft_els_id=S1001074221000887&rfr_iscdi=true