A cascaded fully convolutional network framework for dilated pancreatic duct segmentation

Purpose Pancreatic duct dilation can be considered an early sign of pancreatic ductal adenocarcinoma (PDAC). However, there is little existing research focused on dilated pancreatic duct segmentation as a potential screening tool for people without PDAC. Dilated pancreatic duct segmentation is diffi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for computer assisted radiology and surgery 2022-02, Vol.17 (2), p.343-354
Hauptverfasser: Shen, Chen, Roth, Holger R., Hayashi, Yuichiro, Oda, Masahiro, Miyamoto, Tadaaki, Sato, Gen, Mori, Kensaku
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose Pancreatic duct dilation can be considered an early sign of pancreatic ductal adenocarcinoma (PDAC). However, there is little existing research focused on dilated pancreatic duct segmentation as a potential screening tool for people without PDAC. Dilated pancreatic duct segmentation is difficult due to the lack of readily available labeled data and strong voxel imbalance between the pancreatic duct region and other regions. To overcome these challenges, we propose a two-step approach for dilated pancreatic duct segmentation from abdominal computed tomography (CT) volumes using fully convolutional networks (FCNs). Methods Our framework segments the pancreatic duct in a cascaded manner. The pancreatic duct occupies a tiny portion of abdominal CT volumes. Therefore, to concentrate on the pancreas regions, we use a public pancreas dataset to train an FCN to generate an ROI covering the pancreas and use a 3D U-Net-like FCN for coarse pancreas segmentation. To further improve the dilated pancreatic duct segmentation, we deploy a skip connection on each corresponding resolution level and an attention mechanism in the bottleneck layer. Moreover, we introduce a combined loss function based on Dice loss and Focal loss. Random data augmentation is adopted throughout the experiments to improve the generalizability of the model. Results We manually created a dilated pancreatic duct dataset with semi-automated annotation tools. Experimental results showed that our proposed framework is practical for dilated pancreatic duct segmentation. The average Dice score and sensitivity were 49.9% and 51.9%, respectively. These results show the potential of our approach as a clinical screening tool. Conclusions We investigate an automated framework for dilated pancreatic duct segmentation. The cascade strategy effectively improved the segmentation performance of the pancreatic duct. Our modifications to the FCNs together with random data augmentation and the proposed combined loss function facilitate automated segmentation.
ISSN:1861-6410
1861-6429
DOI:10.1007/s11548-021-02530-x