Efficient Long‐Range Triplet Exciton Transport by Metal–Metal Interaction at Room Temperature
Efficient and long‐range exciton transport is critical for photosynthesis and opto‐electronic devices, and for triplet‐harvesting materials, triplet exciton diffusion length (LD ) and coefficient (D ) are key parameters in determining their performances. Herein, we observed that PtII and PdII organo...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2022-03, Vol.61 (10), p.e202114323-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 10 |
container_start_page | e202114323 |
container_title | Angewandte Chemie International Edition |
container_volume | 61 |
creator | Wan, Qingyun Li, Dian Zou, Jiading Yan, Tengfei Zhu, Ruidan Xiao, Ke Yue, Shuai Cui, Xiaodong Weng, Yuxiang Che, Chi‐Ming |
description | Efficient and long‐range exciton transport is critical for photosynthesis and opto‐electronic devices, and for triplet‐harvesting materials, triplet exciton diffusion length (LD
) and coefficient (D
) are key parameters in determining their performances. Herein, we observed that PtII and PdII organometallic nanowires exhibit long‐range anisotropic triplet exciton LD of 5–7 μm along the M−M direction using direct photoluminescence (PL) imaging technique by low‐power continuous wave (CW) laser excitation. At room temperature, via a combined triplet–triplet annihilation (TTA) analysis and spatial PL imaging, an efficient triplet exciton diffusion was observed for the PtII and PdII nanowires with extended close M−M contact, while is absent in nanowires without close M−M contact. Two‐dimensional electronic spectroscopy (2DES) and calculations revealed a significant contribution of the delocalized 1/3[dσ*(M−M)→π*] excited state during the exciton diffusion modulated by the M−M distance.
Exciton transport plays a pivotal role in organic opto‐electronics. Effective triplet energy transfer is difficult to achieve, due to the less efficient Dexter mechanism for triplet exciton transport than Förster resonant energy transfer for singlet exciton transport. Herein, we show that organic PtII and PdII nanowires exhibit long‐range triplet exciton diffusion lengths with large diffusion coefficients by metal–metal interaction at room temperature. |
doi_str_mv | 10.1002/anie.202114323 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2613289839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2613289839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4393-c78219ff9fbc36af1827f858a3447bfe2f80dfb6507bff06bf7132b4376b5c963</originalsourceid><addsrcrecordid>eNqF0E1LwzAcBvAgitPp1aMUvHjpzFvb9Dhk6mAqyDyXNEsk0iY1SdHd9hEEv6GfxOimghdPyT_88iQ8ABwhOEIQ4jNutBxhiBGiBJMtsIcyjFJSFGQ77ikhacEyNAD73j9GzxjMd8GA0JIiiLI9wCdKaaGlCcnMmof31esdNw8ymTvdNTIkkxehgzVx5sZ31oWkXibXMvDmffX2tSZTE6TjIujIeEjurG2TuWy7eBh6Jw_AjuKNl4ebdQjuLybz86t0dns5PR_PUkFJSVJRMIxKpUpVC5JzhRguFMsYJ5QWtZJYMbhQdZ7BOCmY16pABNeUFHmdiTInQ3C6zu2cfeqlD1WrvZBNw420va9wHj0rWXxsCE7-0EfbOxN_FxVBFGclzaIarZVw1nsnVdU53XK3rBCsPsuvPsuvfsqPF443sX3dysUP_247gnINnnUjl__EVeOb6eQ3_AOWKZJU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2631425945</pqid></control><display><type>article</type><title>Efficient Long‐Range Triplet Exciton Transport by Metal–Metal Interaction at Room Temperature</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wan, Qingyun ; Li, Dian ; Zou, Jiading ; Yan, Tengfei ; Zhu, Ruidan ; Xiao, Ke ; Yue, Shuai ; Cui, Xiaodong ; Weng, Yuxiang ; Che, Chi‐Ming</creator><creatorcontrib>Wan, Qingyun ; Li, Dian ; Zou, Jiading ; Yan, Tengfei ; Zhu, Ruidan ; Xiao, Ke ; Yue, Shuai ; Cui, Xiaodong ; Weng, Yuxiang ; Che, Chi‐Ming</creatorcontrib><description>Efficient and long‐range exciton transport is critical for photosynthesis and opto‐electronic devices, and for triplet‐harvesting materials, triplet exciton diffusion length (LD
) and coefficient (D
) are key parameters in determining their performances. Herein, we observed that PtII and PdII organometallic nanowires exhibit long‐range anisotropic triplet exciton LD of 5–7 μm along the M−M direction using direct photoluminescence (PL) imaging technique by low‐power continuous wave (CW) laser excitation. At room temperature, via a combined triplet–triplet annihilation (TTA) analysis and spatial PL imaging, an efficient triplet exciton diffusion was observed for the PtII and PdII nanowires with extended close M−M contact, while is absent in nanowires without close M−M contact. Two‐dimensional electronic spectroscopy (2DES) and calculations revealed a significant contribution of the delocalized 1/3[dσ*(M−M)→π*] excited state during the exciton diffusion modulated by the M−M distance.
Exciton transport plays a pivotal role in organic opto‐electronics. Effective triplet energy transfer is difficult to achieve, due to the less efficient Dexter mechanism for triplet exciton transport than Förster resonant energy transfer for singlet exciton transport. Herein, we show that organic PtII and PdII nanowires exhibit long‐range triplet exciton diffusion lengths with large diffusion coefficients by metal–metal interaction at room temperature.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202114323</identifier><identifier>PMID: 34941015</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Continuous radiation ; Delocalized Excited State ; Diffusion ; Diffusion length ; Electronic devices ; Electronic equipment ; Electronic spectroscopy ; Energy Transfer ; Excitons ; Imaging techniques ; Mathematical analysis ; Metal–Metal Interactions ; Nanotechnology ; Nanowires ; Photoluminescence ; Photons ; Photosynthesis ; Room temperature ; Spatial analysis ; Supramolecular Polymer ; Triplet Exciton</subject><ispartof>Angewandte Chemie International Edition, 2022-03, Vol.61 (10), p.e202114323-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4393-c78219ff9fbc36af1827f858a3447bfe2f80dfb6507bff06bf7132b4376b5c963</citedby><cites>FETCH-LOGICAL-c4393-c78219ff9fbc36af1827f858a3447bfe2f80dfb6507bff06bf7132b4376b5c963</cites><orcidid>0000-0002-2554-7219 ; 0000-0001-5284-596X ; 0000-0002-2013-8336 ; 0000-0002-8477-7962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202114323$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202114323$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34941015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wan, Qingyun</creatorcontrib><creatorcontrib>Li, Dian</creatorcontrib><creatorcontrib>Zou, Jiading</creatorcontrib><creatorcontrib>Yan, Tengfei</creatorcontrib><creatorcontrib>Zhu, Ruidan</creatorcontrib><creatorcontrib>Xiao, Ke</creatorcontrib><creatorcontrib>Yue, Shuai</creatorcontrib><creatorcontrib>Cui, Xiaodong</creatorcontrib><creatorcontrib>Weng, Yuxiang</creatorcontrib><creatorcontrib>Che, Chi‐Ming</creatorcontrib><title>Efficient Long‐Range Triplet Exciton Transport by Metal–Metal Interaction at Room Temperature</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Efficient and long‐range exciton transport is critical for photosynthesis and opto‐electronic devices, and for triplet‐harvesting materials, triplet exciton diffusion length (LD
) and coefficient (D
) are key parameters in determining their performances. Herein, we observed that PtII and PdII organometallic nanowires exhibit long‐range anisotropic triplet exciton LD of 5–7 μm along the M−M direction using direct photoluminescence (PL) imaging technique by low‐power continuous wave (CW) laser excitation. At room temperature, via a combined triplet–triplet annihilation (TTA) analysis and spatial PL imaging, an efficient triplet exciton diffusion was observed for the PtII and PdII nanowires with extended close M−M contact, while is absent in nanowires without close M−M contact. Two‐dimensional electronic spectroscopy (2DES) and calculations revealed a significant contribution of the delocalized 1/3[dσ*(M−M)→π*] excited state during the exciton diffusion modulated by the M−M distance.
Exciton transport plays a pivotal role in organic opto‐electronics. Effective triplet energy transfer is difficult to achieve, due to the less efficient Dexter mechanism for triplet exciton transport than Förster resonant energy transfer for singlet exciton transport. Herein, we show that organic PtII and PdII nanowires exhibit long‐range triplet exciton diffusion lengths with large diffusion coefficients by metal–metal interaction at room temperature.</description><subject>Continuous radiation</subject><subject>Delocalized Excited State</subject><subject>Diffusion</subject><subject>Diffusion length</subject><subject>Electronic devices</subject><subject>Electronic equipment</subject><subject>Electronic spectroscopy</subject><subject>Energy Transfer</subject><subject>Excitons</subject><subject>Imaging techniques</subject><subject>Mathematical analysis</subject><subject>Metal–Metal Interactions</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Photosynthesis</subject><subject>Room temperature</subject><subject>Spatial analysis</subject><subject>Supramolecular Polymer</subject><subject>Triplet Exciton</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqF0E1LwzAcBvAgitPp1aMUvHjpzFvb9Dhk6mAqyDyXNEsk0iY1SdHd9hEEv6GfxOimghdPyT_88iQ8ABwhOEIQ4jNutBxhiBGiBJMtsIcyjFJSFGQ77ikhacEyNAD73j9GzxjMd8GA0JIiiLI9wCdKaaGlCcnMmof31esdNw8ymTvdNTIkkxehgzVx5sZ31oWkXibXMvDmffX2tSZTE6TjIujIeEjurG2TuWy7eBh6Jw_AjuKNl4ebdQjuLybz86t0dns5PR_PUkFJSVJRMIxKpUpVC5JzhRguFMsYJ5QWtZJYMbhQdZ7BOCmY16pABNeUFHmdiTInQ3C6zu2cfeqlD1WrvZBNw420va9wHj0rWXxsCE7-0EfbOxN_FxVBFGclzaIarZVw1nsnVdU53XK3rBCsPsuvPsuvfsqPF443sX3dysUP_247gnINnnUjl__EVeOb6eQ3_AOWKZJU</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Wan, Qingyun</creator><creator>Li, Dian</creator><creator>Zou, Jiading</creator><creator>Yan, Tengfei</creator><creator>Zhu, Ruidan</creator><creator>Xiao, Ke</creator><creator>Yue, Shuai</creator><creator>Cui, Xiaodong</creator><creator>Weng, Yuxiang</creator><creator>Che, Chi‐Ming</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2554-7219</orcidid><orcidid>https://orcid.org/0000-0001-5284-596X</orcidid><orcidid>https://orcid.org/0000-0002-2013-8336</orcidid><orcidid>https://orcid.org/0000-0002-8477-7962</orcidid></search><sort><creationdate>20220301</creationdate><title>Efficient Long‐Range Triplet Exciton Transport by Metal–Metal Interaction at Room Temperature</title><author>Wan, Qingyun ; Li, Dian ; Zou, Jiading ; Yan, Tengfei ; Zhu, Ruidan ; Xiao, Ke ; Yue, Shuai ; Cui, Xiaodong ; Weng, Yuxiang ; Che, Chi‐Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4393-c78219ff9fbc36af1827f858a3447bfe2f80dfb6507bff06bf7132b4376b5c963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Continuous radiation</topic><topic>Delocalized Excited State</topic><topic>Diffusion</topic><topic>Diffusion length</topic><topic>Electronic devices</topic><topic>Electronic equipment</topic><topic>Electronic spectroscopy</topic><topic>Energy Transfer</topic><topic>Excitons</topic><topic>Imaging techniques</topic><topic>Mathematical analysis</topic><topic>Metal–Metal Interactions</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Photosynthesis</topic><topic>Room temperature</topic><topic>Spatial analysis</topic><topic>Supramolecular Polymer</topic><topic>Triplet Exciton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Qingyun</creatorcontrib><creatorcontrib>Li, Dian</creatorcontrib><creatorcontrib>Zou, Jiading</creatorcontrib><creatorcontrib>Yan, Tengfei</creatorcontrib><creatorcontrib>Zhu, Ruidan</creatorcontrib><creatorcontrib>Xiao, Ke</creatorcontrib><creatorcontrib>Yue, Shuai</creatorcontrib><creatorcontrib>Cui, Xiaodong</creatorcontrib><creatorcontrib>Weng, Yuxiang</creatorcontrib><creatorcontrib>Che, Chi‐Ming</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Qingyun</au><au>Li, Dian</au><au>Zou, Jiading</au><au>Yan, Tengfei</au><au>Zhu, Ruidan</au><au>Xiao, Ke</au><au>Yue, Shuai</au><au>Cui, Xiaodong</au><au>Weng, Yuxiang</au><au>Che, Chi‐Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Long‐Range Triplet Exciton Transport by Metal–Metal Interaction at Room Temperature</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>61</volume><issue>10</issue><spage>e202114323</spage><epage>n/a</epage><pages>e202114323-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Efficient and long‐range exciton transport is critical for photosynthesis and opto‐electronic devices, and for triplet‐harvesting materials, triplet exciton diffusion length (LD
) and coefficient (D
) are key parameters in determining their performances. Herein, we observed that PtII and PdII organometallic nanowires exhibit long‐range anisotropic triplet exciton LD of 5–7 μm along the M−M direction using direct photoluminescence (PL) imaging technique by low‐power continuous wave (CW) laser excitation. At room temperature, via a combined triplet–triplet annihilation (TTA) analysis and spatial PL imaging, an efficient triplet exciton diffusion was observed for the PtII and PdII nanowires with extended close M−M contact, while is absent in nanowires without close M−M contact. Two‐dimensional electronic spectroscopy (2DES) and calculations revealed a significant contribution of the delocalized 1/3[dσ*(M−M)→π*] excited state during the exciton diffusion modulated by the M−M distance.
Exciton transport plays a pivotal role in organic opto‐electronics. Effective triplet energy transfer is difficult to achieve, due to the less efficient Dexter mechanism for triplet exciton transport than Förster resonant energy transfer for singlet exciton transport. Herein, we show that organic PtII and PdII nanowires exhibit long‐range triplet exciton diffusion lengths with large diffusion coefficients by metal–metal interaction at room temperature.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34941015</pmid><doi>10.1002/anie.202114323</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-2554-7219</orcidid><orcidid>https://orcid.org/0000-0001-5284-596X</orcidid><orcidid>https://orcid.org/0000-0002-2013-8336</orcidid><orcidid>https://orcid.org/0000-0002-8477-7962</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2022-03, Vol.61 (10), p.e202114323-n/a |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2613289839 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Continuous radiation Delocalized Excited State Diffusion Diffusion length Electronic devices Electronic equipment Electronic spectroscopy Energy Transfer Excitons Imaging techniques Mathematical analysis Metal–Metal Interactions Nanotechnology Nanowires Photoluminescence Photons Photosynthesis Room temperature Spatial analysis Supramolecular Polymer Triplet Exciton |
title | Efficient Long‐Range Triplet Exciton Transport by Metal–Metal Interaction at Room Temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A17%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Long%E2%80%90Range%20Triplet%20Exciton%20Transport%20by%20Metal%E2%80%93Metal%20Interaction%20at%20Room%20Temperature&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Wan,%20Qingyun&rft.date=2022-03-01&rft.volume=61&rft.issue=10&rft.spage=e202114323&rft.epage=n/a&rft.pages=e202114323-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202114323&rft_dat=%3Cproquest_cross%3E2613289839%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2631425945&rft_id=info:pmid/34941015&rfr_iscdi=true |