Efficient Long‐Range Triplet Exciton Transport by Metal–Metal Interaction at Room Temperature

Efficient and long‐range exciton transport is critical for photosynthesis and opto‐electronic devices, and for triplet‐harvesting materials, triplet exciton diffusion length (LD ) and coefficient (D ) are key parameters in determining their performances. Herein, we observed that PtII and PdII organo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2022-03, Vol.61 (10), p.e202114323-n/a
Hauptverfasser: Wan, Qingyun, Li, Dian, Zou, Jiading, Yan, Tengfei, Zhu, Ruidan, Xiao, Ke, Yue, Shuai, Cui, Xiaodong, Weng, Yuxiang, Che, Chi‐Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page e202114323
container_title Angewandte Chemie International Edition
container_volume 61
creator Wan, Qingyun
Li, Dian
Zou, Jiading
Yan, Tengfei
Zhu, Ruidan
Xiao, Ke
Yue, Shuai
Cui, Xiaodong
Weng, Yuxiang
Che, Chi‐Ming
description Efficient and long‐range exciton transport is critical for photosynthesis and opto‐electronic devices, and for triplet‐harvesting materials, triplet exciton diffusion length (LD ) and coefficient (D ) are key parameters in determining their performances. Herein, we observed that PtII and PdII organometallic nanowires exhibit long‐range anisotropic triplet exciton LD of 5–7 μm along the M−M direction using direct photoluminescence (PL) imaging technique by low‐power continuous wave (CW) laser excitation. At room temperature, via a combined triplet–triplet annihilation (TTA) analysis and spatial PL imaging, an efficient triplet exciton diffusion was observed for the PtII and PdII nanowires with extended close M−M contact, while is absent in nanowires without close M−M contact. Two‐dimensional electronic spectroscopy (2DES) and calculations revealed a significant contribution of the delocalized 1/3[dσ*(M−M)→π*] excited state during the exciton diffusion modulated by the M−M distance. Exciton transport plays a pivotal role in organic opto‐electronics. Effective triplet energy transfer is difficult to achieve, due to the less efficient Dexter mechanism for triplet exciton transport than Förster resonant energy transfer for singlet exciton transport. Herein, we show that organic PtII and PdII nanowires exhibit long‐range triplet exciton diffusion lengths with large diffusion coefficients by metal–metal interaction at room temperature.
doi_str_mv 10.1002/anie.202114323
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2613289839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2613289839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4393-c78219ff9fbc36af1827f858a3447bfe2f80dfb6507bff06bf7132b4376b5c963</originalsourceid><addsrcrecordid>eNqF0E1LwzAcBvAgitPp1aMUvHjpzFvb9Dhk6mAqyDyXNEsk0iY1SdHd9hEEv6GfxOimghdPyT_88iQ8ABwhOEIQ4jNutBxhiBGiBJMtsIcyjFJSFGQ77ikhacEyNAD73j9GzxjMd8GA0JIiiLI9wCdKaaGlCcnMmof31esdNw8ymTvdNTIkkxehgzVx5sZ31oWkXibXMvDmffX2tSZTE6TjIujIeEjurG2TuWy7eBh6Jw_AjuKNl4ebdQjuLybz86t0dns5PR_PUkFJSVJRMIxKpUpVC5JzhRguFMsYJ5QWtZJYMbhQdZ7BOCmY16pABNeUFHmdiTInQ3C6zu2cfeqlD1WrvZBNw420va9wHj0rWXxsCE7-0EfbOxN_FxVBFGclzaIarZVw1nsnVdU53XK3rBCsPsuvPsuvfsqPF443sX3dysUP_247gnINnnUjl__EVeOb6eQ3_AOWKZJU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2631425945</pqid></control><display><type>article</type><title>Efficient Long‐Range Triplet Exciton Transport by Metal–Metal Interaction at Room Temperature</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wan, Qingyun ; Li, Dian ; Zou, Jiading ; Yan, Tengfei ; Zhu, Ruidan ; Xiao, Ke ; Yue, Shuai ; Cui, Xiaodong ; Weng, Yuxiang ; Che, Chi‐Ming</creator><creatorcontrib>Wan, Qingyun ; Li, Dian ; Zou, Jiading ; Yan, Tengfei ; Zhu, Ruidan ; Xiao, Ke ; Yue, Shuai ; Cui, Xiaodong ; Weng, Yuxiang ; Che, Chi‐Ming</creatorcontrib><description>Efficient and long‐range exciton transport is critical for photosynthesis and opto‐electronic devices, and for triplet‐harvesting materials, triplet exciton diffusion length (LD ) and coefficient (D ) are key parameters in determining their performances. Herein, we observed that PtII and PdII organometallic nanowires exhibit long‐range anisotropic triplet exciton LD of 5–7 μm along the M−M direction using direct photoluminescence (PL) imaging technique by low‐power continuous wave (CW) laser excitation. At room temperature, via a combined triplet–triplet annihilation (TTA) analysis and spatial PL imaging, an efficient triplet exciton diffusion was observed for the PtII and PdII nanowires with extended close M−M contact, while is absent in nanowires without close M−M contact. Two‐dimensional electronic spectroscopy (2DES) and calculations revealed a significant contribution of the delocalized 1/3[dσ*(M−M)→π*] excited state during the exciton diffusion modulated by the M−M distance. Exciton transport plays a pivotal role in organic opto‐electronics. Effective triplet energy transfer is difficult to achieve, due to the less efficient Dexter mechanism for triplet exciton transport than Förster resonant energy transfer for singlet exciton transport. Herein, we show that organic PtII and PdII nanowires exhibit long‐range triplet exciton diffusion lengths with large diffusion coefficients by metal–metal interaction at room temperature.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202114323</identifier><identifier>PMID: 34941015</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Continuous radiation ; Delocalized Excited State ; Diffusion ; Diffusion length ; Electronic devices ; Electronic equipment ; Electronic spectroscopy ; Energy Transfer ; Excitons ; Imaging techniques ; Mathematical analysis ; Metal–Metal Interactions ; Nanotechnology ; Nanowires ; Photoluminescence ; Photons ; Photosynthesis ; Room temperature ; Spatial analysis ; Supramolecular Polymer ; Triplet Exciton</subject><ispartof>Angewandte Chemie International Edition, 2022-03, Vol.61 (10), p.e202114323-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4393-c78219ff9fbc36af1827f858a3447bfe2f80dfb6507bff06bf7132b4376b5c963</citedby><cites>FETCH-LOGICAL-c4393-c78219ff9fbc36af1827f858a3447bfe2f80dfb6507bff06bf7132b4376b5c963</cites><orcidid>0000-0002-2554-7219 ; 0000-0001-5284-596X ; 0000-0002-2013-8336 ; 0000-0002-8477-7962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202114323$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202114323$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34941015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wan, Qingyun</creatorcontrib><creatorcontrib>Li, Dian</creatorcontrib><creatorcontrib>Zou, Jiading</creatorcontrib><creatorcontrib>Yan, Tengfei</creatorcontrib><creatorcontrib>Zhu, Ruidan</creatorcontrib><creatorcontrib>Xiao, Ke</creatorcontrib><creatorcontrib>Yue, Shuai</creatorcontrib><creatorcontrib>Cui, Xiaodong</creatorcontrib><creatorcontrib>Weng, Yuxiang</creatorcontrib><creatorcontrib>Che, Chi‐Ming</creatorcontrib><title>Efficient Long‐Range Triplet Exciton Transport by Metal–Metal Interaction at Room Temperature</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Efficient and long‐range exciton transport is critical for photosynthesis and opto‐electronic devices, and for triplet‐harvesting materials, triplet exciton diffusion length (LD ) and coefficient (D ) are key parameters in determining their performances. Herein, we observed that PtII and PdII organometallic nanowires exhibit long‐range anisotropic triplet exciton LD of 5–7 μm along the M−M direction using direct photoluminescence (PL) imaging technique by low‐power continuous wave (CW) laser excitation. At room temperature, via a combined triplet–triplet annihilation (TTA) analysis and spatial PL imaging, an efficient triplet exciton diffusion was observed for the PtII and PdII nanowires with extended close M−M contact, while is absent in nanowires without close M−M contact. Two‐dimensional electronic spectroscopy (2DES) and calculations revealed a significant contribution of the delocalized 1/3[dσ*(M−M)→π*] excited state during the exciton diffusion modulated by the M−M distance. Exciton transport plays a pivotal role in organic opto‐electronics. Effective triplet energy transfer is difficult to achieve, due to the less efficient Dexter mechanism for triplet exciton transport than Förster resonant energy transfer for singlet exciton transport. Herein, we show that organic PtII and PdII nanowires exhibit long‐range triplet exciton diffusion lengths with large diffusion coefficients by metal–metal interaction at room temperature.</description><subject>Continuous radiation</subject><subject>Delocalized Excited State</subject><subject>Diffusion</subject><subject>Diffusion length</subject><subject>Electronic devices</subject><subject>Electronic equipment</subject><subject>Electronic spectroscopy</subject><subject>Energy Transfer</subject><subject>Excitons</subject><subject>Imaging techniques</subject><subject>Mathematical analysis</subject><subject>Metal–Metal Interactions</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Photosynthesis</subject><subject>Room temperature</subject><subject>Spatial analysis</subject><subject>Supramolecular Polymer</subject><subject>Triplet Exciton</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqF0E1LwzAcBvAgitPp1aMUvHjpzFvb9Dhk6mAqyDyXNEsk0iY1SdHd9hEEv6GfxOimghdPyT_88iQ8ABwhOEIQ4jNutBxhiBGiBJMtsIcyjFJSFGQ77ikhacEyNAD73j9GzxjMd8GA0JIiiLI9wCdKaaGlCcnMmof31esdNw8ymTvdNTIkkxehgzVx5sZ31oWkXibXMvDmffX2tSZTE6TjIujIeEjurG2TuWy7eBh6Jw_AjuKNl4ebdQjuLybz86t0dns5PR_PUkFJSVJRMIxKpUpVC5JzhRguFMsYJ5QWtZJYMbhQdZ7BOCmY16pABNeUFHmdiTInQ3C6zu2cfeqlD1WrvZBNw420va9wHj0rWXxsCE7-0EfbOxN_FxVBFGclzaIarZVw1nsnVdU53XK3rBCsPsuvPsuvfsqPF443sX3dysUP_247gnINnnUjl__EVeOb6eQ3_AOWKZJU</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Wan, Qingyun</creator><creator>Li, Dian</creator><creator>Zou, Jiading</creator><creator>Yan, Tengfei</creator><creator>Zhu, Ruidan</creator><creator>Xiao, Ke</creator><creator>Yue, Shuai</creator><creator>Cui, Xiaodong</creator><creator>Weng, Yuxiang</creator><creator>Che, Chi‐Ming</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2554-7219</orcidid><orcidid>https://orcid.org/0000-0001-5284-596X</orcidid><orcidid>https://orcid.org/0000-0002-2013-8336</orcidid><orcidid>https://orcid.org/0000-0002-8477-7962</orcidid></search><sort><creationdate>20220301</creationdate><title>Efficient Long‐Range Triplet Exciton Transport by Metal–Metal Interaction at Room Temperature</title><author>Wan, Qingyun ; Li, Dian ; Zou, Jiading ; Yan, Tengfei ; Zhu, Ruidan ; Xiao, Ke ; Yue, Shuai ; Cui, Xiaodong ; Weng, Yuxiang ; Che, Chi‐Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4393-c78219ff9fbc36af1827f858a3447bfe2f80dfb6507bff06bf7132b4376b5c963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Continuous radiation</topic><topic>Delocalized Excited State</topic><topic>Diffusion</topic><topic>Diffusion length</topic><topic>Electronic devices</topic><topic>Electronic equipment</topic><topic>Electronic spectroscopy</topic><topic>Energy Transfer</topic><topic>Excitons</topic><topic>Imaging techniques</topic><topic>Mathematical analysis</topic><topic>Metal–Metal Interactions</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Photosynthesis</topic><topic>Room temperature</topic><topic>Spatial analysis</topic><topic>Supramolecular Polymer</topic><topic>Triplet Exciton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Qingyun</creatorcontrib><creatorcontrib>Li, Dian</creatorcontrib><creatorcontrib>Zou, Jiading</creatorcontrib><creatorcontrib>Yan, Tengfei</creatorcontrib><creatorcontrib>Zhu, Ruidan</creatorcontrib><creatorcontrib>Xiao, Ke</creatorcontrib><creatorcontrib>Yue, Shuai</creatorcontrib><creatorcontrib>Cui, Xiaodong</creatorcontrib><creatorcontrib>Weng, Yuxiang</creatorcontrib><creatorcontrib>Che, Chi‐Ming</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Qingyun</au><au>Li, Dian</au><au>Zou, Jiading</au><au>Yan, Tengfei</au><au>Zhu, Ruidan</au><au>Xiao, Ke</au><au>Yue, Shuai</au><au>Cui, Xiaodong</au><au>Weng, Yuxiang</au><au>Che, Chi‐Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Long‐Range Triplet Exciton Transport by Metal–Metal Interaction at Room Temperature</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>61</volume><issue>10</issue><spage>e202114323</spage><epage>n/a</epage><pages>e202114323-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Efficient and long‐range exciton transport is critical for photosynthesis and opto‐electronic devices, and for triplet‐harvesting materials, triplet exciton diffusion length (LD ) and coefficient (D ) are key parameters in determining their performances. Herein, we observed that PtII and PdII organometallic nanowires exhibit long‐range anisotropic triplet exciton LD of 5–7 μm along the M−M direction using direct photoluminescence (PL) imaging technique by low‐power continuous wave (CW) laser excitation. At room temperature, via a combined triplet–triplet annihilation (TTA) analysis and spatial PL imaging, an efficient triplet exciton diffusion was observed for the PtII and PdII nanowires with extended close M−M contact, while is absent in nanowires without close M−M contact. Two‐dimensional electronic spectroscopy (2DES) and calculations revealed a significant contribution of the delocalized 1/3[dσ*(M−M)→π*] excited state during the exciton diffusion modulated by the M−M distance. Exciton transport plays a pivotal role in organic opto‐electronics. Effective triplet energy transfer is difficult to achieve, due to the less efficient Dexter mechanism for triplet exciton transport than Förster resonant energy transfer for singlet exciton transport. Herein, we show that organic PtII and PdII nanowires exhibit long‐range triplet exciton diffusion lengths with large diffusion coefficients by metal–metal interaction at room temperature.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34941015</pmid><doi>10.1002/anie.202114323</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-2554-7219</orcidid><orcidid>https://orcid.org/0000-0001-5284-596X</orcidid><orcidid>https://orcid.org/0000-0002-2013-8336</orcidid><orcidid>https://orcid.org/0000-0002-8477-7962</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2022-03, Vol.61 (10), p.e202114323-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2613289839
source Wiley Online Library Journals Frontfile Complete
subjects Continuous radiation
Delocalized Excited State
Diffusion
Diffusion length
Electronic devices
Electronic equipment
Electronic spectroscopy
Energy Transfer
Excitons
Imaging techniques
Mathematical analysis
Metal–Metal Interactions
Nanotechnology
Nanowires
Photoluminescence
Photons
Photosynthesis
Room temperature
Spatial analysis
Supramolecular Polymer
Triplet Exciton
title Efficient Long‐Range Triplet Exciton Transport by Metal–Metal Interaction at Room Temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A17%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Long%E2%80%90Range%20Triplet%20Exciton%20Transport%20by%20Metal%E2%80%93Metal%20Interaction%20at%20Room%20Temperature&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Wan,%20Qingyun&rft.date=2022-03-01&rft.volume=61&rft.issue=10&rft.spage=e202114323&rft.epage=n/a&rft.pages=e202114323-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202114323&rft_dat=%3Cproquest_cross%3E2613289839%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2631425945&rft_id=info:pmid/34941015&rfr_iscdi=true