Finite Mixture Modeling for Program Evaluation: Resampling and Pre-processing Approaches
Background Finite mixture models cluster individuals into latent subgroups based on observed traits. However, inaccurate enumeration of clusters can have lasting implications on policy decisions and allocations of resources. Applied and methodological researchers accept no obvious best model fit sta...
Gespeichert in:
Veröffentlicht in: | Evaluation review 2021-12, Vol.45 (6), p.309-333 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 333 |
---|---|
container_issue | 6 |
container_start_page | 309 |
container_title | Evaluation review |
container_volume | 45 |
creator | Collier, Zachary K. Zhang, Haobai Johnson, Bridgette |
description | Background
Finite mixture models cluster individuals into latent subgroups based on observed traits. However, inaccurate enumeration of clusters can have lasting implications on policy decisions and allocations of resources. Applied and methodological researchers accept no obvious best model fit statistic, and different measures could suggest different numbers of latent clusters.
Objectives
The purpose of this article is to evaluate and compare different cluster enumeration techniques.
Research Design
Study I demonstrates how recently proposed resampling methods result in no precise number of clusters on which all fit statistics agree. We recommend the pre-processing method in Study II as an alternative. Both studies used nationally representative data on working memory, cognitive flexibility, and inhibitory control.
Conclusions
The data plus priors method shows promise to address inconsistencies among fit measures and help applied researchers using finite mixture models in the future. |
doi_str_mv | 10.1177/0193841X211065619 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2612735639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0193841X211065619</sage_id><sourcerecordid>2618840035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-17a96a4fb569bd8d136c60bc8b266b542381691910a914e4435e8e4aab31f26b3</originalsourceid><addsrcrecordid>eNp10F1LwzAUBuAgipvTH-CNFLzxpjMnX228G2NTQVFEYXcladPZ0Y-ZtKL_3tRNBcWrQ5LnnBNehI4BjwGi6ByDpDGDBQHAgguQO2gInJOQSiJ20bB_D3swQAfOrTDGgFm0jwaUSUq5pEO0mBd10ZrgtnhrO-trk5myqJdB3tjg3jZLq6pg9qrKTrVFU18ED8apav1JVJ15YsK1bVLjXH81WfuDSp-NO0R7uSqdOdrWEXqazx6nV-HN3eX1dHITplTEbQiRkkKxXHMhdRZnQEUqsE5jTYTQnBEag5AgASsJzDBGuYkNU0pTyInQdITONnP94pfOuDapCpeaslS1aTqXEAEkolxQ6enpL7pqOlv73_UqjhnGlHsFG5Xaxjlr8mRti0rZ9wRw0see_Ind95xsJ3e6Mtl3x1fOHow3wKml-Vn7_8QP5WeJLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618840035</pqid></control><display><type>article</type><title>Finite Mixture Modeling for Program Evaluation: Resampling and Pre-processing Approaches</title><source>SAGE Complete A-Z List</source><source>Alma/SFX Local Collection</source><creator>Collier, Zachary K. ; Zhang, Haobai ; Johnson, Bridgette</creator><creatorcontrib>Collier, Zachary K. ; Zhang, Haobai ; Johnson, Bridgette</creatorcontrib><description>Background
Finite mixture models cluster individuals into latent subgroups based on observed traits. However, inaccurate enumeration of clusters can have lasting implications on policy decisions and allocations of resources. Applied and methodological researchers accept no obvious best model fit statistic, and different measures could suggest different numbers of latent clusters.
Objectives
The purpose of this article is to evaluate and compare different cluster enumeration techniques.
Research Design
Study I demonstrates how recently proposed resampling methods result in no precise number of clusters on which all fit statistics agree. We recommend the pre-processing method in Study II as an alternative. Both studies used nationally representative data on working memory, cognitive flexibility, and inhibitory control.
Conclusions
The data plus priors method shows promise to address inconsistencies among fit measures and help applied researchers using finite mixture models in the future.</description><identifier>ISSN: 0193-841X</identifier><identifier>EISSN: 1552-3926</identifier><identifier>DOI: 10.1177/0193841X211065619</identifier><identifier>PMID: 34933593</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Cognitive flexibility ; Enumeration ; Program evaluation ; Response inhibition ; Short term memory</subject><ispartof>Evaluation review, 2021-12, Vol.45 (6), p.309-333</ispartof><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-17a96a4fb569bd8d136c60bc8b266b542381691910a914e4435e8e4aab31f26b3</citedby><cites>FETCH-LOGICAL-c368t-17a96a4fb569bd8d136c60bc8b266b542381691910a914e4435e8e4aab31f26b3</cites><orcidid>0000-0003-2526-5120</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0193841X211065619$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0193841X211065619$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21817,27922,27923,43619,43620</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34933593$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Collier, Zachary K.</creatorcontrib><creatorcontrib>Zhang, Haobai</creatorcontrib><creatorcontrib>Johnson, Bridgette</creatorcontrib><title>Finite Mixture Modeling for Program Evaluation: Resampling and Pre-processing Approaches</title><title>Evaluation review</title><addtitle>Eval Rev</addtitle><description>Background
Finite mixture models cluster individuals into latent subgroups based on observed traits. However, inaccurate enumeration of clusters can have lasting implications on policy decisions and allocations of resources. Applied and methodological researchers accept no obvious best model fit statistic, and different measures could suggest different numbers of latent clusters.
Objectives
The purpose of this article is to evaluate and compare different cluster enumeration techniques.
Research Design
Study I demonstrates how recently proposed resampling methods result in no precise number of clusters on which all fit statistics agree. We recommend the pre-processing method in Study II as an alternative. Both studies used nationally representative data on working memory, cognitive flexibility, and inhibitory control.
Conclusions
The data plus priors method shows promise to address inconsistencies among fit measures and help applied researchers using finite mixture models in the future.</description><subject>Cognitive flexibility</subject><subject>Enumeration</subject><subject>Program evaluation</subject><subject>Response inhibition</subject><subject>Short term memory</subject><issn>0193-841X</issn><issn>1552-3926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10F1LwzAUBuAgipvTH-CNFLzxpjMnX228G2NTQVFEYXcladPZ0Y-ZtKL_3tRNBcWrQ5LnnBNehI4BjwGi6ByDpDGDBQHAgguQO2gInJOQSiJ20bB_D3swQAfOrTDGgFm0jwaUSUq5pEO0mBd10ZrgtnhrO-trk5myqJdB3tjg3jZLq6pg9qrKTrVFU18ED8apav1JVJ15YsK1bVLjXH81WfuDSp-NO0R7uSqdOdrWEXqazx6nV-HN3eX1dHITplTEbQiRkkKxXHMhdRZnQEUqsE5jTYTQnBEag5AgASsJzDBGuYkNU0pTyInQdITONnP94pfOuDapCpeaslS1aTqXEAEkolxQ6enpL7pqOlv73_UqjhnGlHsFG5Xaxjlr8mRti0rZ9wRw0see_Ind95xsJ3e6Mtl3x1fOHow3wKml-Vn7_8QP5WeJLQ</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Collier, Zachary K.</creator><creator>Zhang, Haobai</creator><creator>Johnson, Bridgette</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2526-5120</orcidid></search><sort><creationdate>202112</creationdate><title>Finite Mixture Modeling for Program Evaluation: Resampling and Pre-processing Approaches</title><author>Collier, Zachary K. ; Zhang, Haobai ; Johnson, Bridgette</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-17a96a4fb569bd8d136c60bc8b266b542381691910a914e4435e8e4aab31f26b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cognitive flexibility</topic><topic>Enumeration</topic><topic>Program evaluation</topic><topic>Response inhibition</topic><topic>Short term memory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Collier, Zachary K.</creatorcontrib><creatorcontrib>Zhang, Haobai</creatorcontrib><creatorcontrib>Johnson, Bridgette</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>MEDLINE - Academic</collection><jtitle>Evaluation review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collier, Zachary K.</au><au>Zhang, Haobai</au><au>Johnson, Bridgette</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite Mixture Modeling for Program Evaluation: Resampling and Pre-processing Approaches</atitle><jtitle>Evaluation review</jtitle><addtitle>Eval Rev</addtitle><date>2021-12</date><risdate>2021</risdate><volume>45</volume><issue>6</issue><spage>309</spage><epage>333</epage><pages>309-333</pages><issn>0193-841X</issn><eissn>1552-3926</eissn><abstract>Background
Finite mixture models cluster individuals into latent subgroups based on observed traits. However, inaccurate enumeration of clusters can have lasting implications on policy decisions and allocations of resources. Applied and methodological researchers accept no obvious best model fit statistic, and different measures could suggest different numbers of latent clusters.
Objectives
The purpose of this article is to evaluate and compare different cluster enumeration techniques.
Research Design
Study I demonstrates how recently proposed resampling methods result in no precise number of clusters on which all fit statistics agree. We recommend the pre-processing method in Study II as an alternative. Both studies used nationally representative data on working memory, cognitive flexibility, and inhibitory control.
Conclusions
The data plus priors method shows promise to address inconsistencies among fit measures and help applied researchers using finite mixture models in the future.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>34933593</pmid><doi>10.1177/0193841X211065619</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-2526-5120</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0193-841X |
ispartof | Evaluation review, 2021-12, Vol.45 (6), p.309-333 |
issn | 0193-841X 1552-3926 |
language | eng |
recordid | cdi_proquest_miscellaneous_2612735639 |
source | SAGE Complete A-Z List; Alma/SFX Local Collection |
subjects | Cognitive flexibility Enumeration Program evaluation Response inhibition Short term memory |
title | Finite Mixture Modeling for Program Evaluation: Resampling and Pre-processing Approaches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A18%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20Mixture%20Modeling%20for%20Program%20Evaluation:%20Resampling%20and%20Pre-processing%20Approaches&rft.jtitle=Evaluation%20review&rft.au=Collier,%20Zachary%20K.&rft.date=2021-12&rft.volume=45&rft.issue=6&rft.spage=309&rft.epage=333&rft.pages=309-333&rft.issn=0193-841X&rft.eissn=1552-3926&rft_id=info:doi/10.1177/0193841X211065619&rft_dat=%3Cproquest_cross%3E2618840035%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618840035&rft_id=info:pmid/34933593&rft_sage_id=10.1177_0193841X211065619&rfr_iscdi=true |