Finite Mixture Modeling for Program Evaluation: Resampling and Pre-processing Approaches

Background Finite mixture models cluster individuals into latent subgroups based on observed traits. However, inaccurate enumeration of clusters can have lasting implications on policy decisions and allocations of resources. Applied and methodological researchers accept no obvious best model fit sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evaluation review 2021-12, Vol.45 (6), p.309-333
Hauptverfasser: Collier, Zachary K., Zhang, Haobai, Johnson, Bridgette
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 333
container_issue 6
container_start_page 309
container_title Evaluation review
container_volume 45
creator Collier, Zachary K.
Zhang, Haobai
Johnson, Bridgette
description Background Finite mixture models cluster individuals into latent subgroups based on observed traits. However, inaccurate enumeration of clusters can have lasting implications on policy decisions and allocations of resources. Applied and methodological researchers accept no obvious best model fit statistic, and different measures could suggest different numbers of latent clusters. Objectives The purpose of this article is to evaluate and compare different cluster enumeration techniques. Research Design Study I demonstrates how recently proposed resampling methods result in no precise number of clusters on which all fit statistics agree. We recommend the pre-processing method in Study II as an alternative. Both studies used nationally representative data on working memory, cognitive flexibility, and inhibitory control. Conclusions The data plus priors method shows promise to address inconsistencies among fit measures and help applied researchers using finite mixture models in the future.
doi_str_mv 10.1177/0193841X211065619
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2612735639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0193841X211065619</sage_id><sourcerecordid>2618840035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-17a96a4fb569bd8d136c60bc8b266b542381691910a914e4435e8e4aab31f26b3</originalsourceid><addsrcrecordid>eNp10F1LwzAUBuAgipvTH-CNFLzxpjMnX228G2NTQVFEYXcladPZ0Y-ZtKL_3tRNBcWrQ5LnnBNehI4BjwGi6ByDpDGDBQHAgguQO2gInJOQSiJ20bB_D3swQAfOrTDGgFm0jwaUSUq5pEO0mBd10ZrgtnhrO-trk5myqJdB3tjg3jZLq6pg9qrKTrVFU18ED8apav1JVJ15YsK1bVLjXH81WfuDSp-NO0R7uSqdOdrWEXqazx6nV-HN3eX1dHITplTEbQiRkkKxXHMhdRZnQEUqsE5jTYTQnBEag5AgASsJzDBGuYkNU0pTyInQdITONnP94pfOuDapCpeaslS1aTqXEAEkolxQ6enpL7pqOlv73_UqjhnGlHsFG5Xaxjlr8mRti0rZ9wRw0see_Ind95xsJ3e6Mtl3x1fOHow3wKml-Vn7_8QP5WeJLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618840035</pqid></control><display><type>article</type><title>Finite Mixture Modeling for Program Evaluation: Resampling and Pre-processing Approaches</title><source>SAGE Complete A-Z List</source><source>Alma/SFX Local Collection</source><creator>Collier, Zachary K. ; Zhang, Haobai ; Johnson, Bridgette</creator><creatorcontrib>Collier, Zachary K. ; Zhang, Haobai ; Johnson, Bridgette</creatorcontrib><description>Background Finite mixture models cluster individuals into latent subgroups based on observed traits. However, inaccurate enumeration of clusters can have lasting implications on policy decisions and allocations of resources. Applied and methodological researchers accept no obvious best model fit statistic, and different measures could suggest different numbers of latent clusters. Objectives The purpose of this article is to evaluate and compare different cluster enumeration techniques. Research Design Study I demonstrates how recently proposed resampling methods result in no precise number of clusters on which all fit statistics agree. We recommend the pre-processing method in Study II as an alternative. Both studies used nationally representative data on working memory, cognitive flexibility, and inhibitory control. Conclusions The data plus priors method shows promise to address inconsistencies among fit measures and help applied researchers using finite mixture models in the future.</description><identifier>ISSN: 0193-841X</identifier><identifier>EISSN: 1552-3926</identifier><identifier>DOI: 10.1177/0193841X211065619</identifier><identifier>PMID: 34933593</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Cognitive flexibility ; Enumeration ; Program evaluation ; Response inhibition ; Short term memory</subject><ispartof>Evaluation review, 2021-12, Vol.45 (6), p.309-333</ispartof><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-17a96a4fb569bd8d136c60bc8b266b542381691910a914e4435e8e4aab31f26b3</citedby><cites>FETCH-LOGICAL-c368t-17a96a4fb569bd8d136c60bc8b266b542381691910a914e4435e8e4aab31f26b3</cites><orcidid>0000-0003-2526-5120</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0193841X211065619$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0193841X211065619$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21817,27922,27923,43619,43620</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34933593$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Collier, Zachary K.</creatorcontrib><creatorcontrib>Zhang, Haobai</creatorcontrib><creatorcontrib>Johnson, Bridgette</creatorcontrib><title>Finite Mixture Modeling for Program Evaluation: Resampling and Pre-processing Approaches</title><title>Evaluation review</title><addtitle>Eval Rev</addtitle><description>Background Finite mixture models cluster individuals into latent subgroups based on observed traits. However, inaccurate enumeration of clusters can have lasting implications on policy decisions and allocations of resources. Applied and methodological researchers accept no obvious best model fit statistic, and different measures could suggest different numbers of latent clusters. Objectives The purpose of this article is to evaluate and compare different cluster enumeration techniques. Research Design Study I demonstrates how recently proposed resampling methods result in no precise number of clusters on which all fit statistics agree. We recommend the pre-processing method in Study II as an alternative. Both studies used nationally representative data on working memory, cognitive flexibility, and inhibitory control. Conclusions The data plus priors method shows promise to address inconsistencies among fit measures and help applied researchers using finite mixture models in the future.</description><subject>Cognitive flexibility</subject><subject>Enumeration</subject><subject>Program evaluation</subject><subject>Response inhibition</subject><subject>Short term memory</subject><issn>0193-841X</issn><issn>1552-3926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10F1LwzAUBuAgipvTH-CNFLzxpjMnX228G2NTQVFEYXcladPZ0Y-ZtKL_3tRNBcWrQ5LnnBNehI4BjwGi6ByDpDGDBQHAgguQO2gInJOQSiJ20bB_D3swQAfOrTDGgFm0jwaUSUq5pEO0mBd10ZrgtnhrO-trk5myqJdB3tjg3jZLq6pg9qrKTrVFU18ED8apav1JVJ15YsK1bVLjXH81WfuDSp-NO0R7uSqdOdrWEXqazx6nV-HN3eX1dHITplTEbQiRkkKxXHMhdRZnQEUqsE5jTYTQnBEag5AgASsJzDBGuYkNU0pTyInQdITONnP94pfOuDapCpeaslS1aTqXEAEkolxQ6enpL7pqOlv73_UqjhnGlHsFG5Xaxjlr8mRti0rZ9wRw0see_Ind95xsJ3e6Mtl3x1fOHow3wKml-Vn7_8QP5WeJLQ</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Collier, Zachary K.</creator><creator>Zhang, Haobai</creator><creator>Johnson, Bridgette</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2526-5120</orcidid></search><sort><creationdate>202112</creationdate><title>Finite Mixture Modeling for Program Evaluation: Resampling and Pre-processing Approaches</title><author>Collier, Zachary K. ; Zhang, Haobai ; Johnson, Bridgette</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-17a96a4fb569bd8d136c60bc8b266b542381691910a914e4435e8e4aab31f26b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cognitive flexibility</topic><topic>Enumeration</topic><topic>Program evaluation</topic><topic>Response inhibition</topic><topic>Short term memory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Collier, Zachary K.</creatorcontrib><creatorcontrib>Zhang, Haobai</creatorcontrib><creatorcontrib>Johnson, Bridgette</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>MEDLINE - Academic</collection><jtitle>Evaluation review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Collier, Zachary K.</au><au>Zhang, Haobai</au><au>Johnson, Bridgette</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite Mixture Modeling for Program Evaluation: Resampling and Pre-processing Approaches</atitle><jtitle>Evaluation review</jtitle><addtitle>Eval Rev</addtitle><date>2021-12</date><risdate>2021</risdate><volume>45</volume><issue>6</issue><spage>309</spage><epage>333</epage><pages>309-333</pages><issn>0193-841X</issn><eissn>1552-3926</eissn><abstract>Background Finite mixture models cluster individuals into latent subgroups based on observed traits. However, inaccurate enumeration of clusters can have lasting implications on policy decisions and allocations of resources. Applied and methodological researchers accept no obvious best model fit statistic, and different measures could suggest different numbers of latent clusters. Objectives The purpose of this article is to evaluate and compare different cluster enumeration techniques. Research Design Study I demonstrates how recently proposed resampling methods result in no precise number of clusters on which all fit statistics agree. We recommend the pre-processing method in Study II as an alternative. Both studies used nationally representative data on working memory, cognitive flexibility, and inhibitory control. Conclusions The data plus priors method shows promise to address inconsistencies among fit measures and help applied researchers using finite mixture models in the future.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>34933593</pmid><doi>10.1177/0193841X211065619</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-2526-5120</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0193-841X
ispartof Evaluation review, 2021-12, Vol.45 (6), p.309-333
issn 0193-841X
1552-3926
language eng
recordid cdi_proquest_miscellaneous_2612735639
source SAGE Complete A-Z List; Alma/SFX Local Collection
subjects Cognitive flexibility
Enumeration
Program evaluation
Response inhibition
Short term memory
title Finite Mixture Modeling for Program Evaluation: Resampling and Pre-processing Approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A18%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20Mixture%20Modeling%20for%20Program%20Evaluation:%20Resampling%20and%20Pre-processing%20Approaches&rft.jtitle=Evaluation%20review&rft.au=Collier,%20Zachary%20K.&rft.date=2021-12&rft.volume=45&rft.issue=6&rft.spage=309&rft.epage=333&rft.pages=309-333&rft.issn=0193-841X&rft.eissn=1552-3926&rft_id=info:doi/10.1177/0193841X211065619&rft_dat=%3Cproquest_cross%3E2618840035%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618840035&rft_id=info:pmid/34933593&rft_sage_id=10.1177_0193841X211065619&rfr_iscdi=true