Bioclimatic zoning for dairy cows in Brazil by statistical modeling

BACKGROUND Climate conditions affect animal welfare directly, influencing milk production. The Midwest region is the largest cattle‐producing region in Brazil. The objective of this study was to elaborate on bioclimatic zoning for dairy cattle in the Midwest region of Brazil. Air temperature (Ta, °C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the science of food and agriculture 2022-07, Vol.102 (9), p.3847-3857
Hauptverfasser: Aparecido, Lucas Eduardo de Oliveira, Lorençone, João Antonio, Lorençone, Pedro Antonio, Torsoni, Guilherme Botega, Moraes, José Reinaldo da Silva Cabral, Meneses, Kamila Cunha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3857
container_issue 9
container_start_page 3847
container_title Journal of the science of food and agriculture
container_volume 102
creator Aparecido, Lucas Eduardo de Oliveira
Lorençone, João Antonio
Lorençone, Pedro Antonio
Torsoni, Guilherme Botega
Moraes, José Reinaldo da Silva Cabral
Meneses, Kamila Cunha
description BACKGROUND Climate conditions affect animal welfare directly, influencing milk production. The Midwest region is the largest cattle‐producing region in Brazil. The objective of this study was to elaborate on bioclimatic zoning for dairy cattle in the Midwest region of Brazil. Air temperature (Ta, °C) and relative humidity (%, RH) data from a 30‐year historical series (1989–2019) collected by the National Aeronautics and Space Administration/Prediction of Worldwide Energy Resources (NASA/POWER) platform were used. The Temperature and Humidity Index (THI) was determined for the hottest and coldest months. Milk production losses due to climate factors in the Midwest of Brazil for two daily production levels, 10 kg Milk (PL10) and 25 kg Milk (PL25), were estimated. RESULTS The Midwest presented three THI classifications throughout the year: ‘normal’, ‘alert’, and ‘critical alert’. The entire Midwest region was classified as ‘normal’ (THI 
doi_str_mv 10.1002/jsfa.11734
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2612399047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2675233024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2874-cdf91c898ec226f5e0e89105f167e29a3ce4a568b01f520fec08043b9f1377e63</originalsourceid><addsrcrecordid>eNp90E1LwzAcx_EgipvTiy9AAl5E6Pwn6VOO23A-MPCgnkuaJpLRNTNZGd2rN7PTgwdPOeSTH-GL0CWBMQGgd0uvxZiQjMVHaEiAZxEAgWM0DJc0SkhMB-jM-yUAcJ6mp2jAYs4oJXyIZlNjZW1WYmMk3tnGNB9YW4crYVyHpd16bBo8dWJnalx22G-C9AGLGq9sperw4BydaFF7dXE4R-h9fv82e4wWLw9Ps8kikjTP4khWmhOZ81xJSlOdKFA5J5BokmaKcsGkikWS5iUQnVDQSkIOMSu5JizLVMpG6KbfXTv72Sq_KVbGS1XXolG29QVNCWWcQ5wFev2HLm3rmvC7oLKEMgY0Duq2V9JZ753SxdqFFK4rCBT7tMU-bfGdNuCrw2RbrlT1S39aBkB6sDW16v6ZKp5f55N-9AugF4H1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675233024</pqid></control><display><type>article</type><title>Bioclimatic zoning for dairy cows in Brazil by statistical modeling</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Aparecido, Lucas Eduardo de Oliveira ; Lorençone, João Antonio ; Lorençone, Pedro Antonio ; Torsoni, Guilherme Botega ; Moraes, José Reinaldo da Silva Cabral ; Meneses, Kamila Cunha</creator><creatorcontrib>Aparecido, Lucas Eduardo de Oliveira ; Lorençone, João Antonio ; Lorençone, Pedro Antonio ; Torsoni, Guilherme Botega ; Moraes, José Reinaldo da Silva Cabral ; Meneses, Kamila Cunha</creatorcontrib><description>BACKGROUND Climate conditions affect animal welfare directly, influencing milk production. The Midwest region is the largest cattle‐producing region in Brazil. The objective of this study was to elaborate on bioclimatic zoning for dairy cattle in the Midwest region of Brazil. Air temperature (Ta, °C) and relative humidity (%, RH) data from a 30‐year historical series (1989–2019) collected by the National Aeronautics and Space Administration/Prediction of Worldwide Energy Resources (NASA/POWER) platform were used. The Temperature and Humidity Index (THI) was determined for the hottest and coldest months. Milk production losses due to climate factors in the Midwest of Brazil for two daily production levels, 10 kg Milk (PL10) and 25 kg Milk (PL25), were estimated. RESULTS The Midwest presented three THI classifications throughout the year: ‘normal’, ‘alert’, and ‘critical alert’. The entire Midwest region was classified as ‘normal’ (THI &lt; 70) between autumn and winter. The decrease in milk production (DMP) during the autumn and winter presented no loss for both production levels (PL10 and PL25). CONCLUSION On the other hand, a 1 to 2 kg reduction in milk production was observed for cows with a PL25 production level between spring and summer in the southern Midwest region, while cows with a PL10 production level showed no reduction in milk production. Only the cities of Sinop and Cuiabá did not present a ‘critical alert’ during spring/summer for the risk of heat stress. © 2021 Society of Chemical Industry.</description><identifier>ISSN: 0022-5142</identifier><identifier>EISSN: 1097-0010</identifier><identifier>DOI: 10.1002/jsfa.11734</identifier><identifier>PMID: 34932219</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Aeronautics ; Air temperature ; Animal husbandry ; Animal welfare ; Autumn ; Bioclimatology ; Biometeorology ; Cattle ; climate modeling ; Climate models ; Climatic conditions ; Dairy cattle ; Energy resources ; Energy sources ; Heat stress ; Heat tolerance ; Humidity ; Mathematical models ; Milk ; Milk production ; Reduction ; Relative humidity ; Spring ; Spring (season) ; Statistical models ; Summer ; thermal stress ; Winter ; Zoning</subject><ispartof>Journal of the science of food and agriculture, 2022-07, Vol.102 (9), p.3847-3857</ispartof><rights>2021 Society of Chemical Industry.</rights><rights>Copyright © 2022 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2874-cdf91c898ec226f5e0e89105f167e29a3ce4a568b01f520fec08043b9f1377e63</citedby><cites>FETCH-LOGICAL-c2874-cdf91c898ec226f5e0e89105f167e29a3ce4a568b01f520fec08043b9f1377e63</cites><orcidid>0000-0002-4561-6760</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjsfa.11734$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjsfa.11734$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34932219$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aparecido, Lucas Eduardo de Oliveira</creatorcontrib><creatorcontrib>Lorençone, João Antonio</creatorcontrib><creatorcontrib>Lorençone, Pedro Antonio</creatorcontrib><creatorcontrib>Torsoni, Guilherme Botega</creatorcontrib><creatorcontrib>Moraes, José Reinaldo da Silva Cabral</creatorcontrib><creatorcontrib>Meneses, Kamila Cunha</creatorcontrib><title>Bioclimatic zoning for dairy cows in Brazil by statistical modeling</title><title>Journal of the science of food and agriculture</title><addtitle>J Sci Food Agric</addtitle><description>BACKGROUND Climate conditions affect animal welfare directly, influencing milk production. The Midwest region is the largest cattle‐producing region in Brazil. The objective of this study was to elaborate on bioclimatic zoning for dairy cattle in the Midwest region of Brazil. Air temperature (Ta, °C) and relative humidity (%, RH) data from a 30‐year historical series (1989–2019) collected by the National Aeronautics and Space Administration/Prediction of Worldwide Energy Resources (NASA/POWER) platform were used. The Temperature and Humidity Index (THI) was determined for the hottest and coldest months. Milk production losses due to climate factors in the Midwest of Brazil for two daily production levels, 10 kg Milk (PL10) and 25 kg Milk (PL25), were estimated. RESULTS The Midwest presented three THI classifications throughout the year: ‘normal’, ‘alert’, and ‘critical alert’. The entire Midwest region was classified as ‘normal’ (THI &lt; 70) between autumn and winter. The decrease in milk production (DMP) during the autumn and winter presented no loss for both production levels (PL10 and PL25). CONCLUSION On the other hand, a 1 to 2 kg reduction in milk production was observed for cows with a PL25 production level between spring and summer in the southern Midwest region, while cows with a PL10 production level showed no reduction in milk production. Only the cities of Sinop and Cuiabá did not present a ‘critical alert’ during spring/summer for the risk of heat stress. © 2021 Society of Chemical Industry.</description><subject>Aeronautics</subject><subject>Air temperature</subject><subject>Animal husbandry</subject><subject>Animal welfare</subject><subject>Autumn</subject><subject>Bioclimatology</subject><subject>Biometeorology</subject><subject>Cattle</subject><subject>climate modeling</subject><subject>Climate models</subject><subject>Climatic conditions</subject><subject>Dairy cattle</subject><subject>Energy resources</subject><subject>Energy sources</subject><subject>Heat stress</subject><subject>Heat tolerance</subject><subject>Humidity</subject><subject>Mathematical models</subject><subject>Milk</subject><subject>Milk production</subject><subject>Reduction</subject><subject>Relative humidity</subject><subject>Spring</subject><subject>Spring (season)</subject><subject>Statistical models</subject><subject>Summer</subject><subject>thermal stress</subject><subject>Winter</subject><subject>Zoning</subject><issn>0022-5142</issn><issn>1097-0010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E1LwzAcx_EgipvTiy9AAl5E6Pwn6VOO23A-MPCgnkuaJpLRNTNZGd2rN7PTgwdPOeSTH-GL0CWBMQGgd0uvxZiQjMVHaEiAZxEAgWM0DJc0SkhMB-jM-yUAcJ6mp2jAYs4oJXyIZlNjZW1WYmMk3tnGNB9YW4crYVyHpd16bBo8dWJnalx22G-C9AGLGq9sperw4BydaFF7dXE4R-h9fv82e4wWLw9Ps8kikjTP4khWmhOZ81xJSlOdKFA5J5BokmaKcsGkikWS5iUQnVDQSkIOMSu5JizLVMpG6KbfXTv72Sq_KVbGS1XXolG29QVNCWWcQ5wFev2HLm3rmvC7oLKEMgY0Duq2V9JZ753SxdqFFK4rCBT7tMU-bfGdNuCrw2RbrlT1S39aBkB6sDW16v6ZKp5f55N-9AugF4H1</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Aparecido, Lucas Eduardo de Oliveira</creator><creator>Lorençone, João Antonio</creator><creator>Lorençone, Pedro Antonio</creator><creator>Torsoni, Guilherme Botega</creator><creator>Moraes, José Reinaldo da Silva Cabral</creator><creator>Meneses, Kamila Cunha</creator><general>John Wiley &amp; Sons, Ltd</general><general>John Wiley and Sons, Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4561-6760</orcidid></search><sort><creationdate>202207</creationdate><title>Bioclimatic zoning for dairy cows in Brazil by statistical modeling</title><author>Aparecido, Lucas Eduardo de Oliveira ; Lorençone, João Antonio ; Lorençone, Pedro Antonio ; Torsoni, Guilherme Botega ; Moraes, José Reinaldo da Silva Cabral ; Meneses, Kamila Cunha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2874-cdf91c898ec226f5e0e89105f167e29a3ce4a568b01f520fec08043b9f1377e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aeronautics</topic><topic>Air temperature</topic><topic>Animal husbandry</topic><topic>Animal welfare</topic><topic>Autumn</topic><topic>Bioclimatology</topic><topic>Biometeorology</topic><topic>Cattle</topic><topic>climate modeling</topic><topic>Climate models</topic><topic>Climatic conditions</topic><topic>Dairy cattle</topic><topic>Energy resources</topic><topic>Energy sources</topic><topic>Heat stress</topic><topic>Heat tolerance</topic><topic>Humidity</topic><topic>Mathematical models</topic><topic>Milk</topic><topic>Milk production</topic><topic>Reduction</topic><topic>Relative humidity</topic><topic>Spring</topic><topic>Spring (season)</topic><topic>Statistical models</topic><topic>Summer</topic><topic>thermal stress</topic><topic>Winter</topic><topic>Zoning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aparecido, Lucas Eduardo de Oliveira</creatorcontrib><creatorcontrib>Lorençone, João Antonio</creatorcontrib><creatorcontrib>Lorençone, Pedro Antonio</creatorcontrib><creatorcontrib>Torsoni, Guilherme Botega</creatorcontrib><creatorcontrib>Moraes, José Reinaldo da Silva Cabral</creatorcontrib><creatorcontrib>Meneses, Kamila Cunha</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the science of food and agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aparecido, Lucas Eduardo de Oliveira</au><au>Lorençone, João Antonio</au><au>Lorençone, Pedro Antonio</au><au>Torsoni, Guilherme Botega</au><au>Moraes, José Reinaldo da Silva Cabral</au><au>Meneses, Kamila Cunha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioclimatic zoning for dairy cows in Brazil by statistical modeling</atitle><jtitle>Journal of the science of food and agriculture</jtitle><addtitle>J Sci Food Agric</addtitle><date>2022-07</date><risdate>2022</risdate><volume>102</volume><issue>9</issue><spage>3847</spage><epage>3857</epage><pages>3847-3857</pages><issn>0022-5142</issn><eissn>1097-0010</eissn><abstract>BACKGROUND Climate conditions affect animal welfare directly, influencing milk production. The Midwest region is the largest cattle‐producing region in Brazil. The objective of this study was to elaborate on bioclimatic zoning for dairy cattle in the Midwest region of Brazil. Air temperature (Ta, °C) and relative humidity (%, RH) data from a 30‐year historical series (1989–2019) collected by the National Aeronautics and Space Administration/Prediction of Worldwide Energy Resources (NASA/POWER) platform were used. The Temperature and Humidity Index (THI) was determined for the hottest and coldest months. Milk production losses due to climate factors in the Midwest of Brazil for two daily production levels, 10 kg Milk (PL10) and 25 kg Milk (PL25), were estimated. RESULTS The Midwest presented three THI classifications throughout the year: ‘normal’, ‘alert’, and ‘critical alert’. The entire Midwest region was classified as ‘normal’ (THI &lt; 70) between autumn and winter. The decrease in milk production (DMP) during the autumn and winter presented no loss for both production levels (PL10 and PL25). CONCLUSION On the other hand, a 1 to 2 kg reduction in milk production was observed for cows with a PL25 production level between spring and summer in the southern Midwest region, while cows with a PL10 production level showed no reduction in milk production. Only the cities of Sinop and Cuiabá did not present a ‘critical alert’ during spring/summer for the risk of heat stress. © 2021 Society of Chemical Industry.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>34932219</pmid><doi>10.1002/jsfa.11734</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4561-6760</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-5142
ispartof Journal of the science of food and agriculture, 2022-07, Vol.102 (9), p.3847-3857
issn 0022-5142
1097-0010
language eng
recordid cdi_proquest_miscellaneous_2612399047
source Wiley Online Library Journals Frontfile Complete
subjects Aeronautics
Air temperature
Animal husbandry
Animal welfare
Autumn
Bioclimatology
Biometeorology
Cattle
climate modeling
Climate models
Climatic conditions
Dairy cattle
Energy resources
Energy sources
Heat stress
Heat tolerance
Humidity
Mathematical models
Milk
Milk production
Reduction
Relative humidity
Spring
Spring (season)
Statistical models
Summer
thermal stress
Winter
Zoning
title Bioclimatic zoning for dairy cows in Brazil by statistical modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T16%3A02%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioclimatic%20zoning%20for%20dairy%20cows%20in%20Brazil%20by%20statistical%20modeling&rft.jtitle=Journal%20of%20the%20science%20of%20food%20and%20agriculture&rft.au=Aparecido,%20Lucas%20Eduardo%20de%20Oliveira&rft.date=2022-07&rft.volume=102&rft.issue=9&rft.spage=3847&rft.epage=3857&rft.pages=3847-3857&rft.issn=0022-5142&rft.eissn=1097-0010&rft_id=info:doi/10.1002/jsfa.11734&rft_dat=%3Cproquest_cross%3E2675233024%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675233024&rft_id=info:pmid/34932219&rfr_iscdi=true