Increasing efficiency and accuracy of magnetic interaction calculations in colloidal simulation through machine learning

[Display omitted] Calculating the magnetic interaction between magnetic particles that are positioned in close proximity to one another is a surprisingly challenging task. Exact solutions for this interaction exist either through numerical expansion of multipolar interactions or through solving Maxw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2022-04, Vol.611, p.29-38
Hauptverfasser: Pan, Chunzhou, Mahmoudabadbozchelou, Mohammadamin, Duan, Xiaoli, Benneyan, James C., Jamali, Safa, Erb, Randall M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38
container_issue
container_start_page 29
container_title Journal of colloid and interface science
container_volume 611
creator Pan, Chunzhou
Mahmoudabadbozchelou, Mohammadamin
Duan, Xiaoli
Benneyan, James C.
Jamali, Safa
Erb, Randall M.
description [Display omitted] Calculating the magnetic interaction between magnetic particles that are positioned in close proximity to one another is a surprisingly challenging task. Exact solutions for this interaction exist either through numerical expansion of multipolar interactions or through solving Maxwell’s equations with a finite element solver. These approaches can take hours for simple configurations of three particles. Meanwhile, across a range of scientific and engineering problems, machine learning approaches have been developed as fast computational platforms for solving complex systems of interest when large data sets are available. In this paper, we bring the touted benefits of recent advances in science-based machine learning algorithms to bear on the problem of modeling the magnetic interaction between three particles. We investigate this approach using diverse machine learning systems including physics informed neural networks. We find that once the training data has been collected and the model has been initiated, simulation times are reduced from hours to mere seconds while maintaining remarkable accuracy. Despite this promise, we also try to lay bare the current challenges of applying machine learning to these and more complex colloidal systems.
doi_str_mv 10.1016/j.jcis.2021.11.195
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2612393382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979721021147</els_id><sourcerecordid>2612393382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-abd96d1cd8a7c4695d572bdf912cdb786b675aa191dfb884263ba11f506134d63</originalsourceid><addsrcrecordid>eNp9kEFv1DAQhS1ERbctf4AD8pFLFo8dO7HEBVVAK1XiQs-WM3Z2vXKcYieI_vt62YUj0ki257151nyEvAO2BQbq42F7wFC2nHHYQi0tX5ENMC2bDph4TTasKo3udHdJrko5MAYgpX5DLkWruW6F2pDf9wmztyWkHfXjGDD4hM_UJkct4pptfcwjnewu-SUgDWnxtbmEOVG0Eddoj_dSBYpzjHNwNtISprNAl32e192-JuA-JE-jtznV327IxWhj8W_P5zV5_Prlx-1d8_D92_3t54cGhVRLYwenlQN0ve2wVVo62fHBjRo4uqHr1aA6aS1ocOPQ9y1XYrAAo2QKROuUuCYfTrlPef65-rKYKRT0Mdrk57UYroALLUTPq5WfrJjnUrIfzVMOk83PBpg5EjcHcyRujsQN1NKyDr0_56_D5N2_kb-Iq-HTyeDrlr-Cz6b8gexdyB4X4-bwv_wX36WVCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612393382</pqid></control><display><type>article</type><title>Increasing efficiency and accuracy of magnetic interaction calculations in colloidal simulation through machine learning</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Pan, Chunzhou ; Mahmoudabadbozchelou, Mohammadamin ; Duan, Xiaoli ; Benneyan, James C. ; Jamali, Safa ; Erb, Randall M.</creator><creatorcontrib>Pan, Chunzhou ; Mahmoudabadbozchelou, Mohammadamin ; Duan, Xiaoli ; Benneyan, James C. ; Jamali, Safa ; Erb, Randall M.</creatorcontrib><description>[Display omitted] Calculating the magnetic interaction between magnetic particles that are positioned in close proximity to one another is a surprisingly challenging task. Exact solutions for this interaction exist either through numerical expansion of multipolar interactions or through solving Maxwell’s equations with a finite element solver. These approaches can take hours for simple configurations of three particles. Meanwhile, across a range of scientific and engineering problems, machine learning approaches have been developed as fast computational platforms for solving complex systems of interest when large data sets are available. In this paper, we bring the touted benefits of recent advances in science-based machine learning algorithms to bear on the problem of modeling the magnetic interaction between three particles. We investigate this approach using diverse machine learning systems including physics informed neural networks. We find that once the training data has been collected and the model has been initiated, simulation times are reduced from hours to mere seconds while maintaining remarkable accuracy. Despite this promise, we also try to lay bare the current challenges of applying machine learning to these and more complex colloidal systems.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2021.11.195</identifier><identifier>PMID: 34929436</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Colloidal forces ; Computer Simulation ; Dipole model ; Machine Learning ; Magnetic particle interactions ; Magnetic Phenomena ; Multi-fidelity neural network ; Neural Networks, Computer</subject><ispartof>Journal of colloid and interface science, 2022-04, Vol.611, p.29-38</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright © 2021 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-abd96d1cd8a7c4695d572bdf912cdb786b675aa191dfb884263ba11f506134d63</citedby><cites>FETCH-LOGICAL-c356t-abd96d1cd8a7c4695d572bdf912cdb786b675aa191dfb884263ba11f506134d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2021.11.195$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34929436$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Chunzhou</creatorcontrib><creatorcontrib>Mahmoudabadbozchelou, Mohammadamin</creatorcontrib><creatorcontrib>Duan, Xiaoli</creatorcontrib><creatorcontrib>Benneyan, James C.</creatorcontrib><creatorcontrib>Jamali, Safa</creatorcontrib><creatorcontrib>Erb, Randall M.</creatorcontrib><title>Increasing efficiency and accuracy of magnetic interaction calculations in colloidal simulation through machine learning</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted] Calculating the magnetic interaction between magnetic particles that are positioned in close proximity to one another is a surprisingly challenging task. Exact solutions for this interaction exist either through numerical expansion of multipolar interactions or through solving Maxwell’s equations with a finite element solver. These approaches can take hours for simple configurations of three particles. Meanwhile, across a range of scientific and engineering problems, machine learning approaches have been developed as fast computational platforms for solving complex systems of interest when large data sets are available. In this paper, we bring the touted benefits of recent advances in science-based machine learning algorithms to bear on the problem of modeling the magnetic interaction between three particles. We investigate this approach using diverse machine learning systems including physics informed neural networks. We find that once the training data has been collected and the model has been initiated, simulation times are reduced from hours to mere seconds while maintaining remarkable accuracy. Despite this promise, we also try to lay bare the current challenges of applying machine learning to these and more complex colloidal systems.</description><subject>Algorithms</subject><subject>Colloidal forces</subject><subject>Computer Simulation</subject><subject>Dipole model</subject><subject>Machine Learning</subject><subject>Magnetic particle interactions</subject><subject>Magnetic Phenomena</subject><subject>Multi-fidelity neural network</subject><subject>Neural Networks, Computer</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEFv1DAQhS1ERbctf4AD8pFLFo8dO7HEBVVAK1XiQs-WM3Z2vXKcYieI_vt62YUj0ki257151nyEvAO2BQbq42F7wFC2nHHYQi0tX5ENMC2bDph4TTasKo3udHdJrko5MAYgpX5DLkWruW6F2pDf9wmztyWkHfXjGDD4hM_UJkct4pptfcwjnewu-SUgDWnxtbmEOVG0Eddoj_dSBYpzjHNwNtISprNAl32e192-JuA-JE-jtznV327IxWhj8W_P5zV5_Prlx-1d8_D92_3t54cGhVRLYwenlQN0ve2wVVo62fHBjRo4uqHr1aA6aS1ocOPQ9y1XYrAAo2QKROuUuCYfTrlPef65-rKYKRT0Mdrk57UYroALLUTPq5WfrJjnUrIfzVMOk83PBpg5EjcHcyRujsQN1NKyDr0_56_D5N2_kb-Iq-HTyeDrlr-Cz6b8gexdyB4X4-bwv_wX36WVCQ</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Pan, Chunzhou</creator><creator>Mahmoudabadbozchelou, Mohammadamin</creator><creator>Duan, Xiaoli</creator><creator>Benneyan, James C.</creator><creator>Jamali, Safa</creator><creator>Erb, Randall M.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202204</creationdate><title>Increasing efficiency and accuracy of magnetic interaction calculations in colloidal simulation through machine learning</title><author>Pan, Chunzhou ; Mahmoudabadbozchelou, Mohammadamin ; Duan, Xiaoli ; Benneyan, James C. ; Jamali, Safa ; Erb, Randall M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-abd96d1cd8a7c4695d572bdf912cdb786b675aa191dfb884263ba11f506134d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Colloidal forces</topic><topic>Computer Simulation</topic><topic>Dipole model</topic><topic>Machine Learning</topic><topic>Magnetic particle interactions</topic><topic>Magnetic Phenomena</topic><topic>Multi-fidelity neural network</topic><topic>Neural Networks, Computer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Chunzhou</creatorcontrib><creatorcontrib>Mahmoudabadbozchelou, Mohammadamin</creatorcontrib><creatorcontrib>Duan, Xiaoli</creatorcontrib><creatorcontrib>Benneyan, James C.</creatorcontrib><creatorcontrib>Jamali, Safa</creatorcontrib><creatorcontrib>Erb, Randall M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Chunzhou</au><au>Mahmoudabadbozchelou, Mohammadamin</au><au>Duan, Xiaoli</au><au>Benneyan, James C.</au><au>Jamali, Safa</au><au>Erb, Randall M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increasing efficiency and accuracy of magnetic interaction calculations in colloidal simulation through machine learning</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2022-04</date><risdate>2022</risdate><volume>611</volume><spage>29</spage><epage>38</epage><pages>29-38</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted] Calculating the magnetic interaction between magnetic particles that are positioned in close proximity to one another is a surprisingly challenging task. Exact solutions for this interaction exist either through numerical expansion of multipolar interactions or through solving Maxwell’s equations with a finite element solver. These approaches can take hours for simple configurations of three particles. Meanwhile, across a range of scientific and engineering problems, machine learning approaches have been developed as fast computational platforms for solving complex systems of interest when large data sets are available. In this paper, we bring the touted benefits of recent advances in science-based machine learning algorithms to bear on the problem of modeling the magnetic interaction between three particles. We investigate this approach using diverse machine learning systems including physics informed neural networks. We find that once the training data has been collected and the model has been initiated, simulation times are reduced from hours to mere seconds while maintaining remarkable accuracy. Despite this promise, we also try to lay bare the current challenges of applying machine learning to these and more complex colloidal systems.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34929436</pmid><doi>10.1016/j.jcis.2021.11.195</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2022-04, Vol.611, p.29-38
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_2612393382
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Algorithms
Colloidal forces
Computer Simulation
Dipole model
Machine Learning
Magnetic particle interactions
Magnetic Phenomena
Multi-fidelity neural network
Neural Networks, Computer
title Increasing efficiency and accuracy of magnetic interaction calculations in colloidal simulation through machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A32%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increasing%20efficiency%20and%20accuracy%20of%20magnetic%20interaction%20calculations%20in%20colloidal%20simulation%20through%20machine%20learning&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Pan,%20Chunzhou&rft.date=2022-04&rft.volume=611&rft.spage=29&rft.epage=38&rft.pages=29-38&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2021.11.195&rft_dat=%3Cproquest_cross%3E2612393382%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612393382&rft_id=info:pmid/34929436&rft_els_id=S0021979721021147&rfr_iscdi=true