Increasing efficiency and accuracy of magnetic interaction calculations in colloidal simulation through machine learning
[Display omitted] Calculating the magnetic interaction between magnetic particles that are positioned in close proximity to one another is a surprisingly challenging task. Exact solutions for this interaction exist either through numerical expansion of multipolar interactions or through solving Maxw...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2022-04, Vol.611, p.29-38 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 38 |
---|---|
container_issue | |
container_start_page | 29 |
container_title | Journal of colloid and interface science |
container_volume | 611 |
creator | Pan, Chunzhou Mahmoudabadbozchelou, Mohammadamin Duan, Xiaoli Benneyan, James C. Jamali, Safa Erb, Randall M. |
description | [Display omitted]
Calculating the magnetic interaction between magnetic particles that are positioned in close proximity to one another is a surprisingly challenging task. Exact solutions for this interaction exist either through numerical expansion of multipolar interactions or through solving Maxwell’s equations with a finite element solver. These approaches can take hours for simple configurations of three particles. Meanwhile, across a range of scientific and engineering problems, machine learning approaches have been developed as fast computational platforms for solving complex systems of interest when large data sets are available. In this paper, we bring the touted benefits of recent advances in science-based machine learning algorithms to bear on the problem of modeling the magnetic interaction between three particles. We investigate this approach using diverse machine learning systems including physics informed neural networks. We find that once the training data has been collected and the model has been initiated, simulation times are reduced from hours to mere seconds while maintaining remarkable accuracy. Despite this promise, we also try to lay bare the current challenges of applying machine learning to these and more complex colloidal systems. |
doi_str_mv | 10.1016/j.jcis.2021.11.195 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2612393382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979721021147</els_id><sourcerecordid>2612393382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-abd96d1cd8a7c4695d572bdf912cdb786b675aa191dfb884263ba11f506134d63</originalsourceid><addsrcrecordid>eNp9kEFv1DAQhS1ERbctf4AD8pFLFo8dO7HEBVVAK1XiQs-WM3Z2vXKcYieI_vt62YUj0ki257151nyEvAO2BQbq42F7wFC2nHHYQi0tX5ENMC2bDph4TTasKo3udHdJrko5MAYgpX5DLkWruW6F2pDf9wmztyWkHfXjGDD4hM_UJkct4pptfcwjnewu-SUgDWnxtbmEOVG0Eddoj_dSBYpzjHNwNtISprNAl32e192-JuA-JE-jtznV327IxWhj8W_P5zV5_Prlx-1d8_D92_3t54cGhVRLYwenlQN0ve2wVVo62fHBjRo4uqHr1aA6aS1ocOPQ9y1XYrAAo2QKROuUuCYfTrlPef65-rKYKRT0Mdrk57UYroALLUTPq5WfrJjnUrIfzVMOk83PBpg5EjcHcyRujsQN1NKyDr0_56_D5N2_kb-Iq-HTyeDrlr-Cz6b8gexdyB4X4-bwv_wX36WVCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612393382</pqid></control><display><type>article</type><title>Increasing efficiency and accuracy of magnetic interaction calculations in colloidal simulation through machine learning</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Pan, Chunzhou ; Mahmoudabadbozchelou, Mohammadamin ; Duan, Xiaoli ; Benneyan, James C. ; Jamali, Safa ; Erb, Randall M.</creator><creatorcontrib>Pan, Chunzhou ; Mahmoudabadbozchelou, Mohammadamin ; Duan, Xiaoli ; Benneyan, James C. ; Jamali, Safa ; Erb, Randall M.</creatorcontrib><description>[Display omitted]
Calculating the magnetic interaction between magnetic particles that are positioned in close proximity to one another is a surprisingly challenging task. Exact solutions for this interaction exist either through numerical expansion of multipolar interactions or through solving Maxwell’s equations with a finite element solver. These approaches can take hours for simple configurations of three particles. Meanwhile, across a range of scientific and engineering problems, machine learning approaches have been developed as fast computational platforms for solving complex systems of interest when large data sets are available. In this paper, we bring the touted benefits of recent advances in science-based machine learning algorithms to bear on the problem of modeling the magnetic interaction between three particles. We investigate this approach using diverse machine learning systems including physics informed neural networks. We find that once the training data has been collected and the model has been initiated, simulation times are reduced from hours to mere seconds while maintaining remarkable accuracy. Despite this promise, we also try to lay bare the current challenges of applying machine learning to these and more complex colloidal systems.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2021.11.195</identifier><identifier>PMID: 34929436</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Colloidal forces ; Computer Simulation ; Dipole model ; Machine Learning ; Magnetic particle interactions ; Magnetic Phenomena ; Multi-fidelity neural network ; Neural Networks, Computer</subject><ispartof>Journal of colloid and interface science, 2022-04, Vol.611, p.29-38</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright © 2021 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-abd96d1cd8a7c4695d572bdf912cdb786b675aa191dfb884263ba11f506134d63</citedby><cites>FETCH-LOGICAL-c356t-abd96d1cd8a7c4695d572bdf912cdb786b675aa191dfb884263ba11f506134d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2021.11.195$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34929436$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Chunzhou</creatorcontrib><creatorcontrib>Mahmoudabadbozchelou, Mohammadamin</creatorcontrib><creatorcontrib>Duan, Xiaoli</creatorcontrib><creatorcontrib>Benneyan, James C.</creatorcontrib><creatorcontrib>Jamali, Safa</creatorcontrib><creatorcontrib>Erb, Randall M.</creatorcontrib><title>Increasing efficiency and accuracy of magnetic interaction calculations in colloidal simulation through machine learning</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted]
Calculating the magnetic interaction between magnetic particles that are positioned in close proximity to one another is a surprisingly challenging task. Exact solutions for this interaction exist either through numerical expansion of multipolar interactions or through solving Maxwell’s equations with a finite element solver. These approaches can take hours for simple configurations of three particles. Meanwhile, across a range of scientific and engineering problems, machine learning approaches have been developed as fast computational platforms for solving complex systems of interest when large data sets are available. In this paper, we bring the touted benefits of recent advances in science-based machine learning algorithms to bear on the problem of modeling the magnetic interaction between three particles. We investigate this approach using diverse machine learning systems including physics informed neural networks. We find that once the training data has been collected and the model has been initiated, simulation times are reduced from hours to mere seconds while maintaining remarkable accuracy. Despite this promise, we also try to lay bare the current challenges of applying machine learning to these and more complex colloidal systems.</description><subject>Algorithms</subject><subject>Colloidal forces</subject><subject>Computer Simulation</subject><subject>Dipole model</subject><subject>Machine Learning</subject><subject>Magnetic particle interactions</subject><subject>Magnetic Phenomena</subject><subject>Multi-fidelity neural network</subject><subject>Neural Networks, Computer</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEFv1DAQhS1ERbctf4AD8pFLFo8dO7HEBVVAK1XiQs-WM3Z2vXKcYieI_vt62YUj0ki257151nyEvAO2BQbq42F7wFC2nHHYQi0tX5ENMC2bDph4TTasKo3udHdJrko5MAYgpX5DLkWruW6F2pDf9wmztyWkHfXjGDD4hM_UJkct4pptfcwjnewu-SUgDWnxtbmEOVG0Eddoj_dSBYpzjHNwNtISprNAl32e192-JuA-JE-jtznV327IxWhj8W_P5zV5_Prlx-1d8_D92_3t54cGhVRLYwenlQN0ve2wVVo62fHBjRo4uqHr1aA6aS1ocOPQ9y1XYrAAo2QKROuUuCYfTrlPef65-rKYKRT0Mdrk57UYroALLUTPq5WfrJjnUrIfzVMOk83PBpg5EjcHcyRujsQN1NKyDr0_56_D5N2_kb-Iq-HTyeDrlr-Cz6b8gexdyB4X4-bwv_wX36WVCQ</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Pan, Chunzhou</creator><creator>Mahmoudabadbozchelou, Mohammadamin</creator><creator>Duan, Xiaoli</creator><creator>Benneyan, James C.</creator><creator>Jamali, Safa</creator><creator>Erb, Randall M.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202204</creationdate><title>Increasing efficiency and accuracy of magnetic interaction calculations in colloidal simulation through machine learning</title><author>Pan, Chunzhou ; Mahmoudabadbozchelou, Mohammadamin ; Duan, Xiaoli ; Benneyan, James C. ; Jamali, Safa ; Erb, Randall M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-abd96d1cd8a7c4695d572bdf912cdb786b675aa191dfb884263ba11f506134d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Colloidal forces</topic><topic>Computer Simulation</topic><topic>Dipole model</topic><topic>Machine Learning</topic><topic>Magnetic particle interactions</topic><topic>Magnetic Phenomena</topic><topic>Multi-fidelity neural network</topic><topic>Neural Networks, Computer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Chunzhou</creatorcontrib><creatorcontrib>Mahmoudabadbozchelou, Mohammadamin</creatorcontrib><creatorcontrib>Duan, Xiaoli</creatorcontrib><creatorcontrib>Benneyan, James C.</creatorcontrib><creatorcontrib>Jamali, Safa</creatorcontrib><creatorcontrib>Erb, Randall M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Chunzhou</au><au>Mahmoudabadbozchelou, Mohammadamin</au><au>Duan, Xiaoli</au><au>Benneyan, James C.</au><au>Jamali, Safa</au><au>Erb, Randall M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increasing efficiency and accuracy of magnetic interaction calculations in colloidal simulation through machine learning</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2022-04</date><risdate>2022</risdate><volume>611</volume><spage>29</spage><epage>38</epage><pages>29-38</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted]
Calculating the magnetic interaction between magnetic particles that are positioned in close proximity to one another is a surprisingly challenging task. Exact solutions for this interaction exist either through numerical expansion of multipolar interactions or through solving Maxwell’s equations with a finite element solver. These approaches can take hours for simple configurations of three particles. Meanwhile, across a range of scientific and engineering problems, machine learning approaches have been developed as fast computational platforms for solving complex systems of interest when large data sets are available. In this paper, we bring the touted benefits of recent advances in science-based machine learning algorithms to bear on the problem of modeling the magnetic interaction between three particles. We investigate this approach using diverse machine learning systems including physics informed neural networks. We find that once the training data has been collected and the model has been initiated, simulation times are reduced from hours to mere seconds while maintaining remarkable accuracy. Despite this promise, we also try to lay bare the current challenges of applying machine learning to these and more complex colloidal systems.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34929436</pmid><doi>10.1016/j.jcis.2021.11.195</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2022-04, Vol.611, p.29-38 |
issn | 0021-9797 1095-7103 |
language | eng |
recordid | cdi_proquest_miscellaneous_2612393382 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Algorithms Colloidal forces Computer Simulation Dipole model Machine Learning Magnetic particle interactions Magnetic Phenomena Multi-fidelity neural network Neural Networks, Computer |
title | Increasing efficiency and accuracy of magnetic interaction calculations in colloidal simulation through machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A32%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increasing%20efficiency%20and%20accuracy%20of%20magnetic%20interaction%20calculations%20in%20colloidal%20simulation%20through%20machine%20learning&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Pan,%20Chunzhou&rft.date=2022-04&rft.volume=611&rft.spage=29&rft.epage=38&rft.pages=29-38&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2021.11.195&rft_dat=%3Cproquest_cross%3E2612393382%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612393382&rft_id=info:pmid/34929436&rft_els_id=S0021979721021147&rfr_iscdi=true |