Predictive model specific to young adults for estimating thoracic gas volume for air‐displacement plethysmography

Background Thoracic gas volume either measured (mTGV) or predicted by the BodPod® (bpTGV) is used during air‐displacement plethysmography to obtain a better estimate of percent body fat. Evidence suggests that bpTGV underestimates mTGV for young adults and this is especially evident for young males....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical physiology and functional imaging 2022-03, Vol.42 (2), p.96-103
Hauptverfasser: Ducharme, Jeremy B., Hsiao, Yu‐Yu, Gibson, Ann L., Mermier, Christine M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 103
container_issue 2
container_start_page 96
container_title Clinical physiology and functional imaging
container_volume 42
creator Ducharme, Jeremy B.
Hsiao, Yu‐Yu
Gibson, Ann L.
Mermier, Christine M.
description Background Thoracic gas volume either measured (mTGV) or predicted by the BodPod® (bpTGV) is used during air‐displacement plethysmography to obtain a better estimate of percent body fat. Evidence suggests that bpTGV underestimates mTGV for young adults and this is especially evident for young males. Aims We developed, validated, and cross‐validated a TGV prediction model (pTGV) for males and females 18–30 years of age to address this underestimation. Materials & Methods Participants (N = 181; 18–30 years) that had their body composition assessed with the BodPod® were retrospectively randomly assigned to one of two independent subgroups, a validation (n = 145) or cross‐validation (n = 36) sample. Ten iterations of the k‐fold validation procedure were performed to assess the internal replicability of pTGV within the validation sample. External replicability of pTGV was evaluated by assessing the difference and standard error of the estimate (SEE) compared to mTGV in the cross‐validation group. Results The model using height, sex and body mass yielded the highest adjusted R2 (0.627) and the lowest SEE (0.56 L): pTGV = 0.615338 × Sex (0 = Female, 1 = Male) + 0.056267 × Height (cm) – 0.011006 × Body Mass (kg) – 5.358839. R2 remained stable across 10 iterations of the k‐fold procedure (average R2 = 0.64). Differences between pTGV and mTGV were not significantly different than zero for the total cross‐validation sample (−0.06 ± 0.7 L; SEE = 3.0%), for males (−0.11 ± 0.7 L; SEE = 3.7%), or for females (−0.02 ± 0.7 L; SEE = 5.3%). Conclusion We recommend that when it is impractical to obtain mTGV, the strong internal and external replicability of the new prediction model supports its use for males and females ages 18–30 years old during air‐displacement plethysmography.
doi_str_mv 10.1111/cpf.12736
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2612387276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2612387276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3536-564b63f6b252f91778f845f91b738adf7af953513c5103f7e2dfaa67beb1700b3</originalsourceid><addsrcrecordid>eNp10c1KJDEQB_CwuKyfh32BJeBFD6NJp5PqOcqg7oKghxW8Nel0ZSaSnrRJt9K3fYR9Rp_ErKMehM0lRfHjT1FFyHfOTnh-p6a3J7wAob6QHV6CnLE53G191Ipvk92U7hnjIEr4RrZFORe8FNUOSTcRW2cG94i0Cy16mno0zjpDh0CnMK6XVLejHxK1IVJMg-v04HJ3WIWoTXZLnehj8GOHr0S7-Pznb-tS77XBDtcD7T0Oqyl1YRl1v5r2yVerfcKDt3-P3F6c_178nF1dX_5anF3NjJBCzaQqGyWsagpZ2DkHqGxVylw1ICrdWtB2LoXkwkjOhAUsWqu1ggYbDow1Yo8cbXL7GB7GPHrduWTQe73GMKa6ULwQFRSgMj38RO_DGNd5uqyKCkCCYlkdb5SJIaWItu5jXkecas7qf5eo8yXq10tk--MtcWw6bD_k--ozON2AJ-dx-n9Svbi52ES-AER5lNk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2628775760</pqid></control><display><type>article</type><title>Predictive model specific to young adults for estimating thoracic gas volume for air‐displacement plethysmography</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Ducharme, Jeremy B. ; Hsiao, Yu‐Yu ; Gibson, Ann L. ; Mermier, Christine M.</creator><creatorcontrib>Ducharme, Jeremy B. ; Hsiao, Yu‐Yu ; Gibson, Ann L. ; Mermier, Christine M.</creatorcontrib><description>Background Thoracic gas volume either measured (mTGV) or predicted by the BodPod® (bpTGV) is used during air‐displacement plethysmography to obtain a better estimate of percent body fat. Evidence suggests that bpTGV underestimates mTGV for young adults and this is especially evident for young males. Aims We developed, validated, and cross‐validated a TGV prediction model (pTGV) for males and females 18–30 years of age to address this underestimation. Materials &amp; Methods Participants (N = 181; 18–30 years) that had their body composition assessed with the BodPod® were retrospectively randomly assigned to one of two independent subgroups, a validation (n = 145) or cross‐validation (n = 36) sample. Ten iterations of the k‐fold validation procedure were performed to assess the internal replicability of pTGV within the validation sample. External replicability of pTGV was evaluated by assessing the difference and standard error of the estimate (SEE) compared to mTGV in the cross‐validation group. Results The model using height, sex and body mass yielded the highest adjusted R2 (0.627) and the lowest SEE (0.56 L): pTGV = 0.615338 × Sex (0 = Female, 1 = Male) + 0.056267 × Height (cm) – 0.011006 × Body Mass (kg) – 5.358839. R2 remained stable across 10 iterations of the k‐fold procedure (average R2 = 0.64). Differences between pTGV and mTGV were not significantly different than zero for the total cross‐validation sample (−0.06 ± 0.7 L; SEE = 3.0%), for males (−0.11 ± 0.7 L; SEE = 3.7%), or for females (−0.02 ± 0.7 L; SEE = 5.3%). Conclusion We recommend that when it is impractical to obtain mTGV, the strong internal and external replicability of the new prediction model supports its use for males and females ages 18–30 years old during air‐displacement plethysmography.</description><identifier>ISSN: 1475-0961</identifier><identifier>EISSN: 1475-097X</identifier><identifier>DOI: 10.1111/cpf.12736</identifier><identifier>PMID: 34931438</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Adipose Tissue ; Adolescent ; Adult ; Adults ; BodPod ; Body Composition ; Body fat ; Body Height ; Body mass ; Body Mass Index ; Displacement ; Female ; Females ; Humans ; lung volume ; Male ; Males ; modeling ; Plethysmography ; prediction ; Prediction models ; Retrospective Studies ; Sex ; Standard error ; Subgroups ; Thorax ; Young Adult ; Young adults</subject><ispartof>Clinical physiology and functional imaging, 2022-03, Vol.42 (2), p.96-103</ispartof><rights>2021 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley &amp; Sons Ltd.</rights><rights>2022 Scandinavian Society of Clinical Physiology and Nuclear Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3536-564b63f6b252f91778f845f91b738adf7af953513c5103f7e2dfaa67beb1700b3</citedby><cites>FETCH-LOGICAL-c3536-564b63f6b252f91778f845f91b738adf7af953513c5103f7e2dfaa67beb1700b3</cites><orcidid>0000-0003-1653-8721</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcpf.12736$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcpf.12736$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34931438$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ducharme, Jeremy B.</creatorcontrib><creatorcontrib>Hsiao, Yu‐Yu</creatorcontrib><creatorcontrib>Gibson, Ann L.</creatorcontrib><creatorcontrib>Mermier, Christine M.</creatorcontrib><title>Predictive model specific to young adults for estimating thoracic gas volume for air‐displacement plethysmography</title><title>Clinical physiology and functional imaging</title><addtitle>Clin Physiol Funct Imaging</addtitle><description>Background Thoracic gas volume either measured (mTGV) or predicted by the BodPod® (bpTGV) is used during air‐displacement plethysmography to obtain a better estimate of percent body fat. Evidence suggests that bpTGV underestimates mTGV for young adults and this is especially evident for young males. Aims We developed, validated, and cross‐validated a TGV prediction model (pTGV) for males and females 18–30 years of age to address this underestimation. Materials &amp; Methods Participants (N = 181; 18–30 years) that had their body composition assessed with the BodPod® were retrospectively randomly assigned to one of two independent subgroups, a validation (n = 145) or cross‐validation (n = 36) sample. Ten iterations of the k‐fold validation procedure were performed to assess the internal replicability of pTGV within the validation sample. External replicability of pTGV was evaluated by assessing the difference and standard error of the estimate (SEE) compared to mTGV in the cross‐validation group. Results The model using height, sex and body mass yielded the highest adjusted R2 (0.627) and the lowest SEE (0.56 L): pTGV = 0.615338 × Sex (0 = Female, 1 = Male) + 0.056267 × Height (cm) – 0.011006 × Body Mass (kg) – 5.358839. R2 remained stable across 10 iterations of the k‐fold procedure (average R2 = 0.64). Differences between pTGV and mTGV were not significantly different than zero for the total cross‐validation sample (−0.06 ± 0.7 L; SEE = 3.0%), for males (−0.11 ± 0.7 L; SEE = 3.7%), or for females (−0.02 ± 0.7 L; SEE = 5.3%). Conclusion We recommend that when it is impractical to obtain mTGV, the strong internal and external replicability of the new prediction model supports its use for males and females ages 18–30 years old during air‐displacement plethysmography.</description><subject>Adipose Tissue</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Adults</subject><subject>BodPod</subject><subject>Body Composition</subject><subject>Body fat</subject><subject>Body Height</subject><subject>Body mass</subject><subject>Body Mass Index</subject><subject>Displacement</subject><subject>Female</subject><subject>Females</subject><subject>Humans</subject><subject>lung volume</subject><subject>Male</subject><subject>Males</subject><subject>modeling</subject><subject>Plethysmography</subject><subject>prediction</subject><subject>Prediction models</subject><subject>Retrospective Studies</subject><subject>Sex</subject><subject>Standard error</subject><subject>Subgroups</subject><subject>Thorax</subject><subject>Young Adult</subject><subject>Young adults</subject><issn>1475-0961</issn><issn>1475-097X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10c1KJDEQB_CwuKyfh32BJeBFD6NJp5PqOcqg7oKghxW8Nel0ZSaSnrRJt9K3fYR9Rp_ErKMehM0lRfHjT1FFyHfOTnh-p6a3J7wAob6QHV6CnLE53G191Ipvk92U7hnjIEr4RrZFORe8FNUOSTcRW2cG94i0Cy16mno0zjpDh0CnMK6XVLejHxK1IVJMg-v04HJ3WIWoTXZLnehj8GOHr0S7-Pznb-tS77XBDtcD7T0Oqyl1YRl1v5r2yVerfcKDt3-P3F6c_178nF1dX_5anF3NjJBCzaQqGyWsagpZ2DkHqGxVylw1ICrdWtB2LoXkwkjOhAUsWqu1ggYbDow1Yo8cbXL7GB7GPHrduWTQe73GMKa6ULwQFRSgMj38RO_DGNd5uqyKCkCCYlkdb5SJIaWItu5jXkecas7qf5eo8yXq10tk--MtcWw6bD_k--ozON2AJ-dx-n9Svbi52ES-AER5lNk</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Ducharme, Jeremy B.</creator><creator>Hsiao, Yu‐Yu</creator><creator>Gibson, Ann L.</creator><creator>Mermier, Christine M.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TS</scope><scope>7U5</scope><scope>8FD</scope><scope>K9.</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1653-8721</orcidid></search><sort><creationdate>202203</creationdate><title>Predictive model specific to young adults for estimating thoracic gas volume for air‐displacement plethysmography</title><author>Ducharme, Jeremy B. ; Hsiao, Yu‐Yu ; Gibson, Ann L. ; Mermier, Christine M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3536-564b63f6b252f91778f845f91b738adf7af953513c5103f7e2dfaa67beb1700b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adipose Tissue</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Adults</topic><topic>BodPod</topic><topic>Body Composition</topic><topic>Body fat</topic><topic>Body Height</topic><topic>Body mass</topic><topic>Body Mass Index</topic><topic>Displacement</topic><topic>Female</topic><topic>Females</topic><topic>Humans</topic><topic>lung volume</topic><topic>Male</topic><topic>Males</topic><topic>modeling</topic><topic>Plethysmography</topic><topic>prediction</topic><topic>Prediction models</topic><topic>Retrospective Studies</topic><topic>Sex</topic><topic>Standard error</topic><topic>Subgroups</topic><topic>Thorax</topic><topic>Young Adult</topic><topic>Young adults</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ducharme, Jeremy B.</creatorcontrib><creatorcontrib>Hsiao, Yu‐Yu</creatorcontrib><creatorcontrib>Gibson, Ann L.</creatorcontrib><creatorcontrib>Mermier, Christine M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Physical Education Index</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical physiology and functional imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ducharme, Jeremy B.</au><au>Hsiao, Yu‐Yu</au><au>Gibson, Ann L.</au><au>Mermier, Christine M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive model specific to young adults for estimating thoracic gas volume for air‐displacement plethysmography</atitle><jtitle>Clinical physiology and functional imaging</jtitle><addtitle>Clin Physiol Funct Imaging</addtitle><date>2022-03</date><risdate>2022</risdate><volume>42</volume><issue>2</issue><spage>96</spage><epage>103</epage><pages>96-103</pages><issn>1475-0961</issn><eissn>1475-097X</eissn><abstract>Background Thoracic gas volume either measured (mTGV) or predicted by the BodPod® (bpTGV) is used during air‐displacement plethysmography to obtain a better estimate of percent body fat. Evidence suggests that bpTGV underestimates mTGV for young adults and this is especially evident for young males. Aims We developed, validated, and cross‐validated a TGV prediction model (pTGV) for males and females 18–30 years of age to address this underestimation. Materials &amp; Methods Participants (N = 181; 18–30 years) that had their body composition assessed with the BodPod® were retrospectively randomly assigned to one of two independent subgroups, a validation (n = 145) or cross‐validation (n = 36) sample. Ten iterations of the k‐fold validation procedure were performed to assess the internal replicability of pTGV within the validation sample. External replicability of pTGV was evaluated by assessing the difference and standard error of the estimate (SEE) compared to mTGV in the cross‐validation group. Results The model using height, sex and body mass yielded the highest adjusted R2 (0.627) and the lowest SEE (0.56 L): pTGV = 0.615338 × Sex (0 = Female, 1 = Male) + 0.056267 × Height (cm) – 0.011006 × Body Mass (kg) – 5.358839. R2 remained stable across 10 iterations of the k‐fold procedure (average R2 = 0.64). Differences between pTGV and mTGV were not significantly different than zero for the total cross‐validation sample (−0.06 ± 0.7 L; SEE = 3.0%), for males (−0.11 ± 0.7 L; SEE = 3.7%), or for females (−0.02 ± 0.7 L; SEE = 5.3%). Conclusion We recommend that when it is impractical to obtain mTGV, the strong internal and external replicability of the new prediction model supports its use for males and females ages 18–30 years old during air‐displacement plethysmography.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34931438</pmid><doi>10.1111/cpf.12736</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1653-8721</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1475-0961
ispartof Clinical physiology and functional imaging, 2022-03, Vol.42 (2), p.96-103
issn 1475-0961
1475-097X
language eng
recordid cdi_proquest_miscellaneous_2612387276
source MEDLINE; Access via Wiley Online Library
subjects Adipose Tissue
Adolescent
Adult
Adults
BodPod
Body Composition
Body fat
Body Height
Body mass
Body Mass Index
Displacement
Female
Females
Humans
lung volume
Male
Males
modeling
Plethysmography
prediction
Prediction models
Retrospective Studies
Sex
Standard error
Subgroups
Thorax
Young Adult
Young adults
title Predictive model specific to young adults for estimating thoracic gas volume for air‐displacement plethysmography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-09T10%3A14%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20model%20specific%20to%20young%20adults%20for%20estimating%20thoracic%20gas%20volume%20for%20air%E2%80%90displacement%20plethysmography&rft.jtitle=Clinical%20physiology%20and%20functional%20imaging&rft.au=Ducharme,%20Jeremy%20B.&rft.date=2022-03&rft.volume=42&rft.issue=2&rft.spage=96&rft.epage=103&rft.pages=96-103&rft.issn=1475-0961&rft.eissn=1475-097X&rft_id=info:doi/10.1111/cpf.12736&rft_dat=%3Cproquest_cross%3E2612387276%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2628775760&rft_id=info:pmid/34931438&rfr_iscdi=true