The Evolution of the Charge Transport Mechanism in Single‐Molecule Break Junctions Revealed by Flicker Noise Analysis

The electronic noise characterization of single‐molecule devices provides insights into the mechanisms of charge transport. In this work, it is reported that flicker noise can serve as an indicator of the time‐dependent evolution of charge transport mechanisms in the single‐molecule break junction p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-03, Vol.18 (10), p.e2107220-n/a
Hauptverfasser: Pan, Zhichao, Chen, Lichuan, Tang, Chun, Hu, Yong, Yuan, Saisai, Gao, Tengyang, Shi, Jie, Shi, Jia, Yang, Yang, Hong, Wenjing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page e2107220
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 18
creator Pan, Zhichao
Chen, Lichuan
Tang, Chun
Hu, Yong
Yuan, Saisai
Gao, Tengyang
Shi, Jie
Shi, Jia
Yang, Yang
Hong, Wenjing
description The electronic noise characterization of single‐molecule devices provides insights into the mechanisms of charge transport. In this work, it is reported that flicker noise can serve as an indicator of the time‐dependent evolution of charge transport mechanisms in the single‐molecule break junction process. By introducing time‐frequency analysis, the authors find that flicker noise components of the molecule junction show time evolution behavior in the dynamic break junction process. A further investigation of the power‐law dependence of flicker with conductance during the dynamic break junction process reveals that the mechanism of charge transport transits from the through‐space transport to the through‐bond transport, and is dominated by through‐space transport again when the junction is about to rupture. The authors’ results provide a flicker noise‐based way to characterize the time‐dependent evolution of charge transport mechanisms in single‐molecule break junctions. Flicker noise analysis is employed to study the evolution of charge transport mechanisms of single‐molecule junctions in break‐junction measurements. The authors find that the charge transport transits from through‐space transport to through‐bond transport in the opening process, and is dominated by through‐space transport when the junction is about to rupture.
doi_str_mv 10.1002/smll.202107220
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2612046514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637508209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3730-d1ecbde28fdef682397878f9e73127e6c324f1ef4c135960162e52c4eff7cb693</originalsourceid><addsrcrecordid>eNqFkctOwzAQRS0E4r1liSyxYdPiRxInS6jKSy1ItKwj1xlTgxMXuwF1xyfwjXwJiVqKxIbVjEZnjmZ0ETqipEsJYWehtLbLCKNEMEY20C5NKO8kKcs21z0lO2gvhGdCOGWR2EY7PMqY4DHbRe_jKeD-m7P13LgKO43nzaA3lf4J8NjLKsycn-MhqKmsTCixqfDIVE8Wvj4-h86Cqi3gCw_yBd_WlWotAT_AG0gLBZ4s8KU16gU8vnMmAD6vpF0EEw7QlpY2wOGq7qPHy_64d90Z3F_d9M4HHcUFJ52CgpoUwFJdgG6-4plIRaozEM0rAhLFWaQp6EhRHmcJoQmDmKkItBZqkmR8H50uvTPvXmsI87w0QYG1sgJXh5wllJEoiWnUoCd_0GdX--beluIiJikjrbC7pJR3IXjQ-cybUvpFTkneRpK3keTrSJqF45W2npRQrPGfDBogWwLvxsLiH10-Gg4Gv_JvqXmZWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637508209</pqid></control><display><type>article</type><title>The Evolution of the Charge Transport Mechanism in Single‐Molecule Break Junctions Revealed by Flicker Noise Analysis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pan, Zhichao ; Chen, Lichuan ; Tang, Chun ; Hu, Yong ; Yuan, Saisai ; Gao, Tengyang ; Shi, Jie ; Shi, Jia ; Yang, Yang ; Hong, Wenjing</creator><creatorcontrib>Pan, Zhichao ; Chen, Lichuan ; Tang, Chun ; Hu, Yong ; Yuan, Saisai ; Gao, Tengyang ; Shi, Jie ; Shi, Jia ; Yang, Yang ; Hong, Wenjing</creatorcontrib><description>The electronic noise characterization of single‐molecule devices provides insights into the mechanisms of charge transport. In this work, it is reported that flicker noise can serve as an indicator of the time‐dependent evolution of charge transport mechanisms in the single‐molecule break junction process. By introducing time‐frequency analysis, the authors find that flicker noise components of the molecule junction show time evolution behavior in the dynamic break junction process. A further investigation of the power‐law dependence of flicker with conductance during the dynamic break junction process reveals that the mechanism of charge transport transits from the through‐space transport to the through‐bond transport, and is dominated by through‐space transport again when the junction is about to rupture. The authors’ results provide a flicker noise‐based way to characterize the time‐dependent evolution of charge transport mechanisms in single‐molecule break junctions. Flicker noise analysis is employed to study the evolution of charge transport mechanisms of single‐molecule junctions in break‐junction measurements. The authors find that the charge transport transits from through‐space transport to through‐bond transport in the opening process, and is dominated by through‐space transport when the junction is about to rupture.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202107220</identifier><identifier>PMID: 34927352</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>break junctions ; Charge transport ; Evolution ; Flicker ; flicker noise ; Ions ; Nanotechnology ; Noise ; single‐molecule conductance ; through‐space transport ; Time dependence ; Time-frequency analysis</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-03, Vol.18 (10), p.e2107220-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3730-d1ecbde28fdef682397878f9e73127e6c324f1ef4c135960162e52c4eff7cb693</citedby><cites>FETCH-LOGICAL-c3730-d1ecbde28fdef682397878f9e73127e6c324f1ef4c135960162e52c4eff7cb693</cites><orcidid>0000-0003-4080-6175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202107220$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202107220$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34927352$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Zhichao</creatorcontrib><creatorcontrib>Chen, Lichuan</creatorcontrib><creatorcontrib>Tang, Chun</creatorcontrib><creatorcontrib>Hu, Yong</creatorcontrib><creatorcontrib>Yuan, Saisai</creatorcontrib><creatorcontrib>Gao, Tengyang</creatorcontrib><creatorcontrib>Shi, Jie</creatorcontrib><creatorcontrib>Shi, Jia</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Hong, Wenjing</creatorcontrib><title>The Evolution of the Charge Transport Mechanism in Single‐Molecule Break Junctions Revealed by Flicker Noise Analysis</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>The electronic noise characterization of single‐molecule devices provides insights into the mechanisms of charge transport. In this work, it is reported that flicker noise can serve as an indicator of the time‐dependent evolution of charge transport mechanisms in the single‐molecule break junction process. By introducing time‐frequency analysis, the authors find that flicker noise components of the molecule junction show time evolution behavior in the dynamic break junction process. A further investigation of the power‐law dependence of flicker with conductance during the dynamic break junction process reveals that the mechanism of charge transport transits from the through‐space transport to the through‐bond transport, and is dominated by through‐space transport again when the junction is about to rupture. The authors’ results provide a flicker noise‐based way to characterize the time‐dependent evolution of charge transport mechanisms in single‐molecule break junctions. Flicker noise analysis is employed to study the evolution of charge transport mechanisms of single‐molecule junctions in break‐junction measurements. The authors find that the charge transport transits from through‐space transport to through‐bond transport in the opening process, and is dominated by through‐space transport when the junction is about to rupture.</description><subject>break junctions</subject><subject>Charge transport</subject><subject>Evolution</subject><subject>Flicker</subject><subject>flicker noise</subject><subject>Ions</subject><subject>Nanotechnology</subject><subject>Noise</subject><subject>single‐molecule conductance</subject><subject>through‐space transport</subject><subject>Time dependence</subject><subject>Time-frequency analysis</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkctOwzAQRS0E4r1liSyxYdPiRxInS6jKSy1ItKwj1xlTgxMXuwF1xyfwjXwJiVqKxIbVjEZnjmZ0ETqipEsJYWehtLbLCKNEMEY20C5NKO8kKcs21z0lO2gvhGdCOGWR2EY7PMqY4DHbRe_jKeD-m7P13LgKO43nzaA3lf4J8NjLKsycn-MhqKmsTCixqfDIVE8Wvj4-h86Cqi3gCw_yBd_WlWotAT_AG0gLBZ4s8KU16gU8vnMmAD6vpF0EEw7QlpY2wOGq7qPHy_64d90Z3F_d9M4HHcUFJ52CgpoUwFJdgG6-4plIRaozEM0rAhLFWaQp6EhRHmcJoQmDmKkItBZqkmR8H50uvTPvXmsI87w0QYG1sgJXh5wllJEoiWnUoCd_0GdX--beluIiJikjrbC7pJR3IXjQ-cybUvpFTkneRpK3keTrSJqF45W2npRQrPGfDBogWwLvxsLiH10-Gg4Gv_JvqXmZWg</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Pan, Zhichao</creator><creator>Chen, Lichuan</creator><creator>Tang, Chun</creator><creator>Hu, Yong</creator><creator>Yuan, Saisai</creator><creator>Gao, Tengyang</creator><creator>Shi, Jie</creator><creator>Shi, Jia</creator><creator>Yang, Yang</creator><creator>Hong, Wenjing</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4080-6175</orcidid></search><sort><creationdate>20220301</creationdate><title>The Evolution of the Charge Transport Mechanism in Single‐Molecule Break Junctions Revealed by Flicker Noise Analysis</title><author>Pan, Zhichao ; Chen, Lichuan ; Tang, Chun ; Hu, Yong ; Yuan, Saisai ; Gao, Tengyang ; Shi, Jie ; Shi, Jia ; Yang, Yang ; Hong, Wenjing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3730-d1ecbde28fdef682397878f9e73127e6c324f1ef4c135960162e52c4eff7cb693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>break junctions</topic><topic>Charge transport</topic><topic>Evolution</topic><topic>Flicker</topic><topic>flicker noise</topic><topic>Ions</topic><topic>Nanotechnology</topic><topic>Noise</topic><topic>single‐molecule conductance</topic><topic>through‐space transport</topic><topic>Time dependence</topic><topic>Time-frequency analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Zhichao</creatorcontrib><creatorcontrib>Chen, Lichuan</creatorcontrib><creatorcontrib>Tang, Chun</creatorcontrib><creatorcontrib>Hu, Yong</creatorcontrib><creatorcontrib>Yuan, Saisai</creatorcontrib><creatorcontrib>Gao, Tengyang</creatorcontrib><creatorcontrib>Shi, Jie</creatorcontrib><creatorcontrib>Shi, Jia</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Hong, Wenjing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Zhichao</au><au>Chen, Lichuan</au><au>Tang, Chun</au><au>Hu, Yong</au><au>Yuan, Saisai</au><au>Gao, Tengyang</au><au>Shi, Jie</au><au>Shi, Jia</au><au>Yang, Yang</au><au>Hong, Wenjing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Evolution of the Charge Transport Mechanism in Single‐Molecule Break Junctions Revealed by Flicker Noise Analysis</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>18</volume><issue>10</issue><spage>e2107220</spage><epage>n/a</epage><pages>e2107220-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>The electronic noise characterization of single‐molecule devices provides insights into the mechanisms of charge transport. In this work, it is reported that flicker noise can serve as an indicator of the time‐dependent evolution of charge transport mechanisms in the single‐molecule break junction process. By introducing time‐frequency analysis, the authors find that flicker noise components of the molecule junction show time evolution behavior in the dynamic break junction process. A further investigation of the power‐law dependence of flicker with conductance during the dynamic break junction process reveals that the mechanism of charge transport transits from the through‐space transport to the through‐bond transport, and is dominated by through‐space transport again when the junction is about to rupture. The authors’ results provide a flicker noise‐based way to characterize the time‐dependent evolution of charge transport mechanisms in single‐molecule break junctions. Flicker noise analysis is employed to study the evolution of charge transport mechanisms of single‐molecule junctions in break‐junction measurements. The authors find that the charge transport transits from through‐space transport to through‐bond transport in the opening process, and is dominated by through‐space transport when the junction is about to rupture.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34927352</pmid><doi>10.1002/smll.202107220</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4080-6175</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2022-03, Vol.18 (10), p.e2107220-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2612046514
source Wiley Online Library Journals Frontfile Complete
subjects break junctions
Charge transport
Evolution
Flicker
flicker noise
Ions
Nanotechnology
Noise
single‐molecule conductance
through‐space transport
Time dependence
Time-frequency analysis
title The Evolution of the Charge Transport Mechanism in Single‐Molecule Break Junctions Revealed by Flicker Noise Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A13%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Evolution%20of%20the%20Charge%20Transport%20Mechanism%20in%20Single%E2%80%90Molecule%20Break%20Junctions%20Revealed%20by%20Flicker%20Noise%20Analysis&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Pan,%20Zhichao&rft.date=2022-03-01&rft.volume=18&rft.issue=10&rft.spage=e2107220&rft.epage=n/a&rft.pages=e2107220-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202107220&rft_dat=%3Cproquest_cross%3E2637508209%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637508209&rft_id=info:pmid/34927352&rfr_iscdi=true