Understanding the deformation gradient in Abaqus and key guidelines for anisotropic hyperelastic user material subroutines (UMATs)

This tutorial paper provides a step-by-step guide to developing a comprehensive understanding of the different forms of the deformation gradient used in Abaqus, and outlines a number of key issues that must be considered when developing an Abaqus user defined material subroutine (UMAT) in which the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanical behavior of biomedical materials 2022-02, Vol.126, p.104940-104940, Article 104940
Hauptverfasser: Nolan, D.R., Lally, C., McGarry, J.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104940
container_issue
container_start_page 104940
container_title Journal of the mechanical behavior of biomedical materials
container_volume 126
creator Nolan, D.R.
Lally, C.
McGarry, J.P.
description This tutorial paper provides a step-by-step guide to developing a comprehensive understanding of the different forms of the deformation gradient used in Abaqus, and outlines a number of key issues that must be considered when developing an Abaqus user defined material subroutine (UMAT) in which the Cauchy stress is computed from the deformation gradient. Firstly, we examine the “classical” forms of global and local deformation gradients. We then show that Abaqus/Standard does not use the classical form of the local deformation gradient when continuum elements are used, and we highlight the important implications for UMAT development. We outline the key steps that must be implemented in developing an anisotropic fibre-reinforced hyperelastic UMAT for use with continuum elements and local orientation systems. We also demonstrate that a classical local deformation gradient is provided by Abaqus/Standard if structural (shell and membrane) elements are used, and by Abaqus/Explicit for all element types. We emphasise, however, that the majority of biomechanical simulations rely on the use of continuum elements with a local coordinate system in Abaqus/Standard, and therefore the development of a hyperelastic UMAT requires an in-depth and precise understanding of the form of the non-classical deformation gradient provided as input by Abaqus. Several worked examples and case studies are provided for each section, so that the details and implications of the form of the deformation gradient can be fully understood. For each worked example in this tutorial paper the source files and code (Abaqus input files, UMATs, and Matlab script files) are provided, allowing the reader to efficiently explore the implications of the form of the deformation gradient in the development of a UMAT.
doi_str_mv 10.1016/j.jmbbm.2021.104940
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2612042901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1751616121005713</els_id><sourcerecordid>2612042901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-f442068e44a4ce1ec06d7db52d0983763a64a2408bb354d2bd6498c603a80323</originalsourceid><addsrcrecordid>eNp9kE1vEzEQhi0EoqXwC5CQj-WwYfwRx3vgEFW0IBVxSc-WPyapw-46tb1IufLLcZvCkdN4Rs87Iz-EvGewYMDUp_1iPzo3Ljhw1iayl_CCnDO90h0wDS_be7VknWKKnZE3pewBFIDWr8mZkD0XQi3Pye-7KWAu1U4hTjta75EG3KY82hrTRHfZhohTpXGia2cf5kIbSX_ike7mGHCIExba-DaOJdWcDtHT--MBMw621NbMBTNt6zBHO9Ayu5zm-hS7vPu-3pSPb8mrrR0KvnuuF2Rz_WVz9bW7_XHz7Wp923kJsnZbKTkojVJa6ZGhBxVWwS15gF6LlRJWScslaOfEUgbugpK99gqE1SC4uCCXp7WHnB5mLNWMsXgcBjthmovhinGQvAfWUHFCfU6lZNyaQ46jzUfDwDy6N3vz5N48ujcn9y314fnA7EYM_zJ_ZTfg8wnA9stfEbMpvsn1GGJGX01I8b8H_gBXxZee</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612042901</pqid></control><display><type>article</type><title>Understanding the deformation gradient in Abaqus and key guidelines for anisotropic hyperelastic user material subroutines (UMATs)</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Nolan, D.R. ; Lally, C. ; McGarry, J.P.</creator><creatorcontrib>Nolan, D.R. ; Lally, C. ; McGarry, J.P.</creatorcontrib><description>This tutorial paper provides a step-by-step guide to developing a comprehensive understanding of the different forms of the deformation gradient used in Abaqus, and outlines a number of key issues that must be considered when developing an Abaqus user defined material subroutine (UMAT) in which the Cauchy stress is computed from the deformation gradient. Firstly, we examine the “classical” forms of global and local deformation gradients. We then show that Abaqus/Standard does not use the classical form of the local deformation gradient when continuum elements are used, and we highlight the important implications for UMAT development. We outline the key steps that must be implemented in developing an anisotropic fibre-reinforced hyperelastic UMAT for use with continuum elements and local orientation systems. We also demonstrate that a classical local deformation gradient is provided by Abaqus/Standard if structural (shell and membrane) elements are used, and by Abaqus/Explicit for all element types. We emphasise, however, that the majority of biomechanical simulations rely on the use of continuum elements with a local coordinate system in Abaqus/Standard, and therefore the development of a hyperelastic UMAT requires an in-depth and precise understanding of the form of the non-classical deformation gradient provided as input by Abaqus. Several worked examples and case studies are provided for each section, so that the details and implications of the form of the deformation gradient can be fully understood. For each worked example in this tutorial paper the source files and code (Abaqus input files, UMATs, and Matlab script files) are provided, allowing the reader to efficiently explore the implications of the form of the deformation gradient in the development of a UMAT.</description><identifier>ISSN: 1751-6161</identifier><identifier>EISSN: 1878-0180</identifier><identifier>DOI: 10.1016/j.jmbbm.2021.104940</identifier><identifier>PMID: 34923365</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Abaqus ; Anisotropic ; Anisotropy ; Elasticity ; Fibers ; Finite Element Analysis ; Models, Biological ; Stress, Mechanical</subject><ispartof>Journal of the mechanical behavior of biomedical materials, 2022-02, Vol.126, p.104940-104940, Article 104940</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-f442068e44a4ce1ec06d7db52d0983763a64a2408bb354d2bd6498c603a80323</citedby><cites>FETCH-LOGICAL-c404t-f442068e44a4ce1ec06d7db52d0983763a64a2408bb354d2bd6498c603a80323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1751616121005713$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34923365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nolan, D.R.</creatorcontrib><creatorcontrib>Lally, C.</creatorcontrib><creatorcontrib>McGarry, J.P.</creatorcontrib><title>Understanding the deformation gradient in Abaqus and key guidelines for anisotropic hyperelastic user material subroutines (UMATs)</title><title>Journal of the mechanical behavior of biomedical materials</title><addtitle>J Mech Behav Biomed Mater</addtitle><description>This tutorial paper provides a step-by-step guide to developing a comprehensive understanding of the different forms of the deformation gradient used in Abaqus, and outlines a number of key issues that must be considered when developing an Abaqus user defined material subroutine (UMAT) in which the Cauchy stress is computed from the deformation gradient. Firstly, we examine the “classical” forms of global and local deformation gradients. We then show that Abaqus/Standard does not use the classical form of the local deformation gradient when continuum elements are used, and we highlight the important implications for UMAT development. We outline the key steps that must be implemented in developing an anisotropic fibre-reinforced hyperelastic UMAT for use with continuum elements and local orientation systems. We also demonstrate that a classical local deformation gradient is provided by Abaqus/Standard if structural (shell and membrane) elements are used, and by Abaqus/Explicit for all element types. We emphasise, however, that the majority of biomechanical simulations rely on the use of continuum elements with a local coordinate system in Abaqus/Standard, and therefore the development of a hyperelastic UMAT requires an in-depth and precise understanding of the form of the non-classical deformation gradient provided as input by Abaqus. Several worked examples and case studies are provided for each section, so that the details and implications of the form of the deformation gradient can be fully understood. For each worked example in this tutorial paper the source files and code (Abaqus input files, UMATs, and Matlab script files) are provided, allowing the reader to efficiently explore the implications of the form of the deformation gradient in the development of a UMAT.</description><subject>Abaqus</subject><subject>Anisotropic</subject><subject>Anisotropy</subject><subject>Elasticity</subject><subject>Fibers</subject><subject>Finite Element Analysis</subject><subject>Models, Biological</subject><subject>Stress, Mechanical</subject><issn>1751-6161</issn><issn>1878-0180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1vEzEQhi0EoqXwC5CQj-WwYfwRx3vgEFW0IBVxSc-WPyapw-46tb1IufLLcZvCkdN4Rs87Iz-EvGewYMDUp_1iPzo3Ljhw1iayl_CCnDO90h0wDS_be7VknWKKnZE3pewBFIDWr8mZkD0XQi3Pye-7KWAu1U4hTjta75EG3KY82hrTRHfZhohTpXGia2cf5kIbSX_ike7mGHCIExba-DaOJdWcDtHT--MBMw621NbMBTNt6zBHO9Ayu5zm-hS7vPu-3pSPb8mrrR0KvnuuF2Rz_WVz9bW7_XHz7Wp923kJsnZbKTkojVJa6ZGhBxVWwS15gF6LlRJWScslaOfEUgbugpK99gqE1SC4uCCXp7WHnB5mLNWMsXgcBjthmovhinGQvAfWUHFCfU6lZNyaQ46jzUfDwDy6N3vz5N48ujcn9y314fnA7EYM_zJ_ZTfg8wnA9stfEbMpvsn1GGJGX01I8b8H_gBXxZee</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Nolan, D.R.</creator><creator>Lally, C.</creator><creator>McGarry, J.P.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202202</creationdate><title>Understanding the deformation gradient in Abaqus and key guidelines for anisotropic hyperelastic user material subroutines (UMATs)</title><author>Nolan, D.R. ; Lally, C. ; McGarry, J.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-f442068e44a4ce1ec06d7db52d0983763a64a2408bb354d2bd6498c603a80323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abaqus</topic><topic>Anisotropic</topic><topic>Anisotropy</topic><topic>Elasticity</topic><topic>Fibers</topic><topic>Finite Element Analysis</topic><topic>Models, Biological</topic><topic>Stress, Mechanical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nolan, D.R.</creatorcontrib><creatorcontrib>Lally, C.</creatorcontrib><creatorcontrib>McGarry, J.P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nolan, D.R.</au><au>Lally, C.</au><au>McGarry, J.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the deformation gradient in Abaqus and key guidelines for anisotropic hyperelastic user material subroutines (UMATs)</atitle><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle><addtitle>J Mech Behav Biomed Mater</addtitle><date>2022-02</date><risdate>2022</risdate><volume>126</volume><spage>104940</spage><epage>104940</epage><pages>104940-104940</pages><artnum>104940</artnum><issn>1751-6161</issn><eissn>1878-0180</eissn><abstract>This tutorial paper provides a step-by-step guide to developing a comprehensive understanding of the different forms of the deformation gradient used in Abaqus, and outlines a number of key issues that must be considered when developing an Abaqus user defined material subroutine (UMAT) in which the Cauchy stress is computed from the deformation gradient. Firstly, we examine the “classical” forms of global and local deformation gradients. We then show that Abaqus/Standard does not use the classical form of the local deformation gradient when continuum elements are used, and we highlight the important implications for UMAT development. We outline the key steps that must be implemented in developing an anisotropic fibre-reinforced hyperelastic UMAT for use with continuum elements and local orientation systems. We also demonstrate that a classical local deformation gradient is provided by Abaqus/Standard if structural (shell and membrane) elements are used, and by Abaqus/Explicit for all element types. We emphasise, however, that the majority of biomechanical simulations rely on the use of continuum elements with a local coordinate system in Abaqus/Standard, and therefore the development of a hyperelastic UMAT requires an in-depth and precise understanding of the form of the non-classical deformation gradient provided as input by Abaqus. Several worked examples and case studies are provided for each section, so that the details and implications of the form of the deformation gradient can be fully understood. For each worked example in this tutorial paper the source files and code (Abaqus input files, UMATs, and Matlab script files) are provided, allowing the reader to efficiently explore the implications of the form of the deformation gradient in the development of a UMAT.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>34923365</pmid><doi>10.1016/j.jmbbm.2021.104940</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-6161
ispartof Journal of the mechanical behavior of biomedical materials, 2022-02, Vol.126, p.104940-104940, Article 104940
issn 1751-6161
1878-0180
language eng
recordid cdi_proquest_miscellaneous_2612042901
source MEDLINE; Elsevier ScienceDirect Journals
subjects Abaqus
Anisotropic
Anisotropy
Elasticity
Fibers
Finite Element Analysis
Models, Biological
Stress, Mechanical
title Understanding the deformation gradient in Abaqus and key guidelines for anisotropic hyperelastic user material subroutines (UMATs)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A21%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20deformation%20gradient%20in%20Abaqus%20and%20key%20guidelines%20for%20anisotropic%20hyperelastic%20user%20material%20subroutines%20(UMATs)&rft.jtitle=Journal%20of%20the%20mechanical%20behavior%20of%20biomedical%20materials&rft.au=Nolan,%20D.R.&rft.date=2022-02&rft.volume=126&rft.spage=104940&rft.epage=104940&rft.pages=104940-104940&rft.artnum=104940&rft.issn=1751-6161&rft.eissn=1878-0180&rft_id=info:doi/10.1016/j.jmbbm.2021.104940&rft_dat=%3Cproquest_cross%3E2612042901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612042901&rft_id=info:pmid/34923365&rft_els_id=S1751616121005713&rfr_iscdi=true