A methodology for large-scale R & D planning based on cluster analysis

This research is a description of a decision support approach to large-scale R & D planning. A quantitative model is used based on three analytical tools: the interaction matrix, hierarchical cluster analysis, and the Boston Consulting Group strategic planning matrix. Results of the model are us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on engineering management 1993-08, Vol.40 (3), p.283-292
Hauptverfasser: MATHIEU, R. G, GIBSON, J. E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 292
container_issue 3
container_start_page 283
container_title IEEE transactions on engineering management
container_volume 40
creator MATHIEU, R. G
GIBSON, J. E
description This research is a description of a decision support approach to large-scale R & D planning. A quantitative model is used based on three analytical tools: the interaction matrix, hierarchical cluster analysis, and the Boston Consulting Group strategic planning matrix. Results of the model are used to determine the number of R & D program areas, the technological focus of each R & D program area, and the relative allocation of resources to the R & D program areas. Traditional optimization techniques for R & D planning often generate solutions without allowing for the judgment, experience, and insight of the decision maker(s). The decision support approach presented here supports, rather than replaces, the judgment of the R & D planner by using a graphic display of the relative position of technology clusters, and by using an interactive and iterative approach to problem solving. An application to R & D program planning for Virginia's Center for Innovative Technology's Commercial Space Program is presented.
doi_str_mv 10.1109/17.233190
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_26117446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26117446</sourcerecordid><originalsourceid>FETCH-LOGICAL-p128t-3b5cf846d013953340e4dff7b8b9231d8c8faf9a6738eea8528f9f86eb8171423</originalsourceid><addsrcrecordid>eNotj09LwzAYxoMoOKcHv0EOsltn3iRt3xzHdCoMBNFzedsms5I1NekO-_Z2uNPDAz-eP4zdg1gCCPMI5VIqBUZcsBnkOWZCaHHJZkIAZkYZuGY3Kf1MVudSzNhmxfd2_A5t8GF35C5E7inubJYa8pZ_8AV_4oOnvu_6Ha8p2ZaHnjf-kEYbOfXkj6lLt-zKkU_27qxz9rV5_ly_Ztv3l7f1apsNIHHMVJ03DnXRClAmV0oLq1vnyhprIxW02KAjZ6goFVpLmEt0xmFha4QStFRztvjPHWL4Pdg0VvsuNdZPA204pEoWAKXWxQQ-nEE6PXGR-qZL1RC7PcVjpRCnQq3-APy1WMk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26117446</pqid></control><display><type>article</type><title>A methodology for large-scale R &amp; D planning based on cluster analysis</title><source>IEEE Electronic Library (IEL)</source><creator>MATHIEU, R. G ; GIBSON, J. E</creator><creatorcontrib>MATHIEU, R. G ; GIBSON, J. E</creatorcontrib><description><![CDATA[This research is a description of a decision support approach to large-scale R & D planning. A quantitative model is used based on three analytical tools: the interaction matrix, hierarchical cluster analysis, and the Boston Consulting Group strategic planning matrix. Results of the model are used to determine the number of R & D program areas, the technological focus of each R & D program area, and the relative allocation of resources to the R & D program areas. Traditional optimization techniques for R & D planning often generate solutions without allowing for the judgment, experience, and insight of the decision maker(s). The decision support approach presented here supports, rather than replaces, the judgment of the R & D planner by using a graphic display of the relative position of technology clusters, and by using an interactive and iterative approach to problem solving. An application to R & D program planning for Virginia's Center for Innovative Technology's Commercial Space Program is presented.]]></description><identifier>ISSN: 0018-9391</identifier><identifier>EISSN: 1558-0040</identifier><identifier>DOI: 10.1109/17.233190</identifier><identifier>CODEN: IEEMA4</identifier><language>eng</language><publisher>New York, NY: Institute of Electrical and Electronics Engineers</publisher><subject>Applied sciences ; Exact sciences and technology ; Operational research and scientific management ; Operational research. Management science ; Planning. Forecasting</subject><ispartof>IEEE transactions on engineering management, 1993-08, Vol.40 (3), p.283-292</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3889234$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>MATHIEU, R. G</creatorcontrib><creatorcontrib>GIBSON, J. E</creatorcontrib><title>A methodology for large-scale R &amp; D planning based on cluster analysis</title><title>IEEE transactions on engineering management</title><description><![CDATA[This research is a description of a decision support approach to large-scale R & D planning. A quantitative model is used based on three analytical tools: the interaction matrix, hierarchical cluster analysis, and the Boston Consulting Group strategic planning matrix. Results of the model are used to determine the number of R & D program areas, the technological focus of each R & D program area, and the relative allocation of resources to the R & D program areas. Traditional optimization techniques for R & D planning often generate solutions without allowing for the judgment, experience, and insight of the decision maker(s). The decision support approach presented here supports, rather than replaces, the judgment of the R & D planner by using a graphic display of the relative position of technology clusters, and by using an interactive and iterative approach to problem solving. An application to R & D program planning for Virginia's Center for Innovative Technology's Commercial Space Program is presented.]]></description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Planning. Forecasting</subject><issn>0018-9391</issn><issn>1558-0040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNotj09LwzAYxoMoOKcHv0EOsltn3iRt3xzHdCoMBNFzedsms5I1NekO-_Z2uNPDAz-eP4zdg1gCCPMI5VIqBUZcsBnkOWZCaHHJZkIAZkYZuGY3Kf1MVudSzNhmxfd2_A5t8GF35C5E7inubJYa8pZ_8AV_4oOnvu_6Ha8p2ZaHnjf-kEYbOfXkj6lLt-zKkU_27qxz9rV5_ly_Ztv3l7f1apsNIHHMVJ03DnXRClAmV0oLq1vnyhprIxW02KAjZ6goFVpLmEt0xmFha4QStFRztvjPHWL4Pdg0VvsuNdZPA204pEoWAKXWxQQ-nEE6PXGR-qZL1RC7PcVjpRCnQq3-APy1WMk</recordid><startdate>19930801</startdate><enddate>19930801</enddate><creator>MATHIEU, R. G</creator><creator>GIBSON, J. E</creator><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19930801</creationdate><title>A methodology for large-scale R &amp; D planning based on cluster analysis</title><author>MATHIEU, R. G ; GIBSON, J. E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p128t-3b5cf846d013953340e4dff7b8b9231d8c8faf9a6738eea8528f9f86eb8171423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Planning. Forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MATHIEU, R. G</creatorcontrib><creatorcontrib>GIBSON, J. E</creatorcontrib><collection>Pascal-Francis</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on engineering management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MATHIEU, R. G</au><au>GIBSON, J. E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A methodology for large-scale R &amp; D planning based on cluster analysis</atitle><jtitle>IEEE transactions on engineering management</jtitle><date>1993-08-01</date><risdate>1993</risdate><volume>40</volume><issue>3</issue><spage>283</spage><epage>292</epage><pages>283-292</pages><issn>0018-9391</issn><eissn>1558-0040</eissn><coden>IEEMA4</coden><abstract><![CDATA[This research is a description of a decision support approach to large-scale R & D planning. A quantitative model is used based on three analytical tools: the interaction matrix, hierarchical cluster analysis, and the Boston Consulting Group strategic planning matrix. Results of the model are used to determine the number of R & D program areas, the technological focus of each R & D program area, and the relative allocation of resources to the R & D program areas. Traditional optimization techniques for R & D planning often generate solutions without allowing for the judgment, experience, and insight of the decision maker(s). The decision support approach presented here supports, rather than replaces, the judgment of the R & D planner by using a graphic display of the relative position of technology clusters, and by using an interactive and iterative approach to problem solving. An application to R & D program planning for Virginia's Center for Innovative Technology's Commercial Space Program is presented.]]></abstract><cop>New York, NY</cop><pub>Institute of Electrical and Electronics Engineers</pub><doi>10.1109/17.233190</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9391
ispartof IEEE transactions on engineering management, 1993-08, Vol.40 (3), p.283-292
issn 0018-9391
1558-0040
language eng
recordid cdi_proquest_miscellaneous_26117446
source IEEE Electronic Library (IEL)
subjects Applied sciences
Exact sciences and technology
Operational research and scientific management
Operational research. Management science
Planning. Forecasting
title A methodology for large-scale R & D planning based on cluster analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A13%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20methodology%20for%20large-scale%20R%20&%20D%20planning%20based%20on%20cluster%20analysis&rft.jtitle=IEEE%20transactions%20on%20engineering%20management&rft.au=MATHIEU,%20R.%20G&rft.date=1993-08-01&rft.volume=40&rft.issue=3&rft.spage=283&rft.epage=292&rft.pages=283-292&rft.issn=0018-9391&rft.eissn=1558-0040&rft.coden=IEEMA4&rft_id=info:doi/10.1109/17.233190&rft_dat=%3Cproquest_pasca%3E26117446%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26117446&rft_id=info:pmid/&rfr_iscdi=true