Cycles and cocycles of fuzzy graphs
In this paper we show that if the fuzzy graph (σ,μ) is a cycle, then it is a fuzzy cycle if and only if (σ,μ) is not a fuzzy tree. We also examine the relationship between fuzzy bridges and cycles. We introduce and examine the concepts of chords, twigs, 1-chains with boundary zero, cycle vectors, co...
Gespeichert in:
Veröffentlicht in: | Information sciences 1996, Vol.90 (1), p.39-49 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 49 |
---|---|
container_issue | 1 |
container_start_page | 39 |
container_title | Information sciences |
container_volume | 90 |
creator | Mordeson, John N. Nair, Premchand S. |
description | In this paper we show that if the fuzzy graph (σ,μ) is a cycle, then it is a fuzzy cycle if and only if (σ,μ) is not a fuzzy tree. We also examine the relationship between fuzzy bridges and cycles. We introduce and examine the concepts of chords, twigs, 1-chains with boundary zero, cycle vectors, coboundary, and cocycles for fuzzy graphs. We show that although the set of cycle vectors, fuzzy cycle vectors, cocycles, and fuzzy cocycles do not necessarily form vector spaces over the field
Z
2 of integers modulo 2, they nearly do. Thisallows us to introduce the concepts of (fuzzy) cycle rank and (fuzzy) cocycle rank for fuzzy graphs in a meaningful way. |
doi_str_mv | 10.1016/0020-0255(95)00238-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26103613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0020025595002383</els_id><sourcerecordid>26103613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-1e6b76da437fc5d8748b2550704f500db621443a92a23873db57e0eef981a4bd3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD7-gYuCIrqo3jSvdiPI4AsG3Og6pMmNRjrtmMwIM7_e1g6zdHU58J1z77mEnFG4oUDlLUABORRCXFXiuheszNkemdBSFbksKrpPJjvkkByl9AUAXEk5IefTtW0wZaZ1me3sKDqf-dVms84-oll8phNy4E2T8HQ7j8n748Pb9DmfvT69TO9nuWWSL3OKslbSGc6Ut8KVipd1vxAUcC8AXC0LyjkzVWH6CxVztVAIiL4qqeG1Y8fkcsxdxO57hWmp5yFZbBrTYrdKupAUmKSsB_kI2tilFNHrRQxzE9eagh4-ooe6eqirK6H_PqIH28U23yRrGh9Na0PaeRkIyYXosbsRw77rT8Cokw3YWnQhol1q14X_9_wCaspxxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26103613</pqid></control><display><type>article</type><title>Cycles and cocycles of fuzzy graphs</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Mordeson, John N. ; Nair, Premchand S.</creator><creatorcontrib>Mordeson, John N. ; Nair, Premchand S.</creatorcontrib><description>In this paper we show that if the fuzzy graph (σ,μ) is a cycle, then it is a fuzzy cycle if and only if (σ,μ) is not a fuzzy tree. We also examine the relationship between fuzzy bridges and cycles. We introduce and examine the concepts of chords, twigs, 1-chains with boundary zero, cycle vectors, coboundary, and cocycles for fuzzy graphs. We show that although the set of cycle vectors, fuzzy cycle vectors, cocycles, and fuzzy cocycles do not necessarily form vector spaces over the field
Z
2 of integers modulo 2, they nearly do. Thisallows us to introduce the concepts of (fuzzy) cycle rank and (fuzzy) cocycle rank for fuzzy graphs in a meaningful way.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/0020-0255(95)00238-3</identifier><identifier>CODEN: ISIJBC</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Information retrieval. Graph ; Theoretical computing</subject><ispartof>Information sciences, 1996, Vol.90 (1), p.39-49</ispartof><rights>1996</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-1e6b76da437fc5d8748b2550704f500db621443a92a23873db57e0eef981a4bd3</citedby><cites>FETCH-LOGICAL-c364t-1e6b76da437fc5d8748b2550704f500db621443a92a23873db57e0eef981a4bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0020-0255(95)00238-3$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,4022,27921,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3056455$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mordeson, John N.</creatorcontrib><creatorcontrib>Nair, Premchand S.</creatorcontrib><title>Cycles and cocycles of fuzzy graphs</title><title>Information sciences</title><description>In this paper we show that if the fuzzy graph (σ,μ) is a cycle, then it is a fuzzy cycle if and only if (σ,μ) is not a fuzzy tree. We also examine the relationship between fuzzy bridges and cycles. We introduce and examine the concepts of chords, twigs, 1-chains with boundary zero, cycle vectors, coboundary, and cocycles for fuzzy graphs. We show that although the set of cycle vectors, fuzzy cycle vectors, cocycles, and fuzzy cocycles do not necessarily form vector spaces over the field
Z
2 of integers modulo 2, they nearly do. Thisallows us to introduce the concepts of (fuzzy) cycle rank and (fuzzy) cocycle rank for fuzzy graphs in a meaningful way.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Information retrieval. Graph</subject><subject>Theoretical computing</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD7-gYuCIrqo3jSvdiPI4AsG3Og6pMmNRjrtmMwIM7_e1g6zdHU58J1z77mEnFG4oUDlLUABORRCXFXiuheszNkemdBSFbksKrpPJjvkkByl9AUAXEk5IefTtW0wZaZ1me3sKDqf-dVms84-oll8phNy4E2T8HQ7j8n748Pb9DmfvT69TO9nuWWSL3OKslbSGc6Ut8KVipd1vxAUcC8AXC0LyjkzVWH6CxVztVAIiL4qqeG1Y8fkcsxdxO57hWmp5yFZbBrTYrdKupAUmKSsB_kI2tilFNHrRQxzE9eagh4-ooe6eqirK6H_PqIH28U23yRrGh9Na0PaeRkIyYXosbsRw77rT8Cokw3YWnQhol1q14X_9_wCaspxxA</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Mordeson, John N.</creator><creator>Nair, Premchand S.</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1996</creationdate><title>Cycles and cocycles of fuzzy graphs</title><author>Mordeson, John N. ; Nair, Premchand S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-1e6b76da437fc5d8748b2550704f500db621443a92a23873db57e0eef981a4bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Information retrieval. Graph</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mordeson, John N.</creatorcontrib><creatorcontrib>Nair, Premchand S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mordeson, John N.</au><au>Nair, Premchand S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cycles and cocycles of fuzzy graphs</atitle><jtitle>Information sciences</jtitle><date>1996</date><risdate>1996</risdate><volume>90</volume><issue>1</issue><spage>39</spage><epage>49</epage><pages>39-49</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><coden>ISIJBC</coden><abstract>In this paper we show that if the fuzzy graph (σ,μ) is a cycle, then it is a fuzzy cycle if and only if (σ,μ) is not a fuzzy tree. We also examine the relationship between fuzzy bridges and cycles. We introduce and examine the concepts of chords, twigs, 1-chains with boundary zero, cycle vectors, coboundary, and cocycles for fuzzy graphs. We show that although the set of cycle vectors, fuzzy cycle vectors, cocycles, and fuzzy cocycles do not necessarily form vector spaces over the field
Z
2 of integers modulo 2, they nearly do. Thisallows us to introduce the concepts of (fuzzy) cycle rank and (fuzzy) cocycle rank for fuzzy graphs in a meaningful way.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/0020-0255(95)00238-3</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-0255 |
ispartof | Information sciences, 1996, Vol.90 (1), p.39-49 |
issn | 0020-0255 1872-6291 |
language | eng |
recordid | cdi_proquest_miscellaneous_26103613 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Applied sciences Computer science control theory systems Exact sciences and technology Information retrieval. Graph Theoretical computing |
title | Cycles and cocycles of fuzzy graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A15%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cycles%20and%20cocycles%20of%20fuzzy%20graphs&rft.jtitle=Information%20sciences&rft.au=Mordeson,%20John%20N.&rft.date=1996&rft.volume=90&rft.issue=1&rft.spage=39&rft.epage=49&rft.pages=39-49&rft.issn=0020-0255&rft.eissn=1872-6291&rft.coden=ISIJBC&rft_id=info:doi/10.1016/0020-0255(95)00238-3&rft_dat=%3Cproquest_cross%3E26103613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26103613&rft_id=info:pmid/&rft_els_id=0020025595002383&rfr_iscdi=true |