Cycles and cocycles of fuzzy graphs

In this paper we show that if the fuzzy graph (σ,μ) is a cycle, then it is a fuzzy cycle if and only if (σ,μ) is not a fuzzy tree. We also examine the relationship between fuzzy bridges and cycles. We introduce and examine the concepts of chords, twigs, 1-chains with boundary zero, cycle vectors, co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences 1996, Vol.90 (1), p.39-49
Hauptverfasser: Mordeson, John N., Nair, Premchand S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 49
container_issue 1
container_start_page 39
container_title Information sciences
container_volume 90
creator Mordeson, John N.
Nair, Premchand S.
description In this paper we show that if the fuzzy graph (σ,μ) is a cycle, then it is a fuzzy cycle if and only if (σ,μ) is not a fuzzy tree. We also examine the relationship between fuzzy bridges and cycles. We introduce and examine the concepts of chords, twigs, 1-chains with boundary zero, cycle vectors, coboundary, and cocycles for fuzzy graphs. We show that although the set of cycle vectors, fuzzy cycle vectors, cocycles, and fuzzy cocycles do not necessarily form vector spaces over the field Z 2 of integers modulo 2, they nearly do. Thisallows us to introduce the concepts of (fuzzy) cycle rank and (fuzzy) cocycle rank for fuzzy graphs in a meaningful way.
doi_str_mv 10.1016/0020-0255(95)00238-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26103613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0020025595002383</els_id><sourcerecordid>26103613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-1e6b76da437fc5d8748b2550704f500db621443a92a23873db57e0eef981a4bd3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD7-gYuCIrqo3jSvdiPI4AsG3Og6pMmNRjrtmMwIM7_e1g6zdHU58J1z77mEnFG4oUDlLUABORRCXFXiuheszNkemdBSFbksKrpPJjvkkByl9AUAXEk5IefTtW0wZaZ1me3sKDqf-dVms84-oll8phNy4E2T8HQ7j8n748Pb9DmfvT69TO9nuWWSL3OKslbSGc6Ut8KVipd1vxAUcC8AXC0LyjkzVWH6CxVztVAIiL4qqeG1Y8fkcsxdxO57hWmp5yFZbBrTYrdKupAUmKSsB_kI2tilFNHrRQxzE9eagh4-ooe6eqirK6H_PqIH28U23yRrGh9Na0PaeRkIyYXosbsRw77rT8Cokw3YWnQhol1q14X_9_wCaspxxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26103613</pqid></control><display><type>article</type><title>Cycles and cocycles of fuzzy graphs</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Mordeson, John N. ; Nair, Premchand S.</creator><creatorcontrib>Mordeson, John N. ; Nair, Premchand S.</creatorcontrib><description>In this paper we show that if the fuzzy graph (σ,μ) is a cycle, then it is a fuzzy cycle if and only if (σ,μ) is not a fuzzy tree. We also examine the relationship between fuzzy bridges and cycles. We introduce and examine the concepts of chords, twigs, 1-chains with boundary zero, cycle vectors, coboundary, and cocycles for fuzzy graphs. We show that although the set of cycle vectors, fuzzy cycle vectors, cocycles, and fuzzy cocycles do not necessarily form vector spaces over the field Z 2 of integers modulo 2, they nearly do. Thisallows us to introduce the concepts of (fuzzy) cycle rank and (fuzzy) cocycle rank for fuzzy graphs in a meaningful way.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/0020-0255(95)00238-3</identifier><identifier>CODEN: ISIJBC</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Information retrieval. Graph ; Theoretical computing</subject><ispartof>Information sciences, 1996, Vol.90 (1), p.39-49</ispartof><rights>1996</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-1e6b76da437fc5d8748b2550704f500db621443a92a23873db57e0eef981a4bd3</citedby><cites>FETCH-LOGICAL-c364t-1e6b76da437fc5d8748b2550704f500db621443a92a23873db57e0eef981a4bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0020-0255(95)00238-3$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,4022,27921,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3056455$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mordeson, John N.</creatorcontrib><creatorcontrib>Nair, Premchand S.</creatorcontrib><title>Cycles and cocycles of fuzzy graphs</title><title>Information sciences</title><description>In this paper we show that if the fuzzy graph (σ,μ) is a cycle, then it is a fuzzy cycle if and only if (σ,μ) is not a fuzzy tree. We also examine the relationship between fuzzy bridges and cycles. We introduce and examine the concepts of chords, twigs, 1-chains with boundary zero, cycle vectors, coboundary, and cocycles for fuzzy graphs. We show that although the set of cycle vectors, fuzzy cycle vectors, cocycles, and fuzzy cocycles do not necessarily form vector spaces over the field Z 2 of integers modulo 2, they nearly do. Thisallows us to introduce the concepts of (fuzzy) cycle rank and (fuzzy) cocycle rank for fuzzy graphs in a meaningful way.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Information retrieval. Graph</subject><subject>Theoretical computing</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD7-gYuCIrqo3jSvdiPI4AsG3Og6pMmNRjrtmMwIM7_e1g6zdHU58J1z77mEnFG4oUDlLUABORRCXFXiuheszNkemdBSFbksKrpPJjvkkByl9AUAXEk5IefTtW0wZaZ1me3sKDqf-dVms84-oll8phNy4E2T8HQ7j8n748Pb9DmfvT69TO9nuWWSL3OKslbSGc6Ut8KVipd1vxAUcC8AXC0LyjkzVWH6CxVztVAIiL4qqeG1Y8fkcsxdxO57hWmp5yFZbBrTYrdKupAUmKSsB_kI2tilFNHrRQxzE9eagh4-ooe6eqirK6H_PqIH28U23yRrGh9Na0PaeRkIyYXosbsRw77rT8Cokw3YWnQhol1q14X_9_wCaspxxA</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Mordeson, John N.</creator><creator>Nair, Premchand S.</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1996</creationdate><title>Cycles and cocycles of fuzzy graphs</title><author>Mordeson, John N. ; Nair, Premchand S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-1e6b76da437fc5d8748b2550704f500db621443a92a23873db57e0eef981a4bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Information retrieval. Graph</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mordeson, John N.</creatorcontrib><creatorcontrib>Nair, Premchand S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mordeson, John N.</au><au>Nair, Premchand S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cycles and cocycles of fuzzy graphs</atitle><jtitle>Information sciences</jtitle><date>1996</date><risdate>1996</risdate><volume>90</volume><issue>1</issue><spage>39</spage><epage>49</epage><pages>39-49</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><coden>ISIJBC</coden><abstract>In this paper we show that if the fuzzy graph (σ,μ) is a cycle, then it is a fuzzy cycle if and only if (σ,μ) is not a fuzzy tree. We also examine the relationship between fuzzy bridges and cycles. We introduce and examine the concepts of chords, twigs, 1-chains with boundary zero, cycle vectors, coboundary, and cocycles for fuzzy graphs. We show that although the set of cycle vectors, fuzzy cycle vectors, cocycles, and fuzzy cocycles do not necessarily form vector spaces over the field Z 2 of integers modulo 2, they nearly do. Thisallows us to introduce the concepts of (fuzzy) cycle rank and (fuzzy) cocycle rank for fuzzy graphs in a meaningful way.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/0020-0255(95)00238-3</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0255
ispartof Information sciences, 1996, Vol.90 (1), p.39-49
issn 0020-0255
1872-6291
language eng
recordid cdi_proquest_miscellaneous_26103613
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Information retrieval. Graph
Theoretical computing
title Cycles and cocycles of fuzzy graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A15%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cycles%20and%20cocycles%20of%20fuzzy%20graphs&rft.jtitle=Information%20sciences&rft.au=Mordeson,%20John%20N.&rft.date=1996&rft.volume=90&rft.issue=1&rft.spage=39&rft.epage=49&rft.pages=39-49&rft.issn=0020-0255&rft.eissn=1872-6291&rft.coden=ISIJBC&rft_id=info:doi/10.1016/0020-0255(95)00238-3&rft_dat=%3Cproquest_cross%3E26103613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26103613&rft_id=info:pmid/&rft_els_id=0020025595002383&rfr_iscdi=true