Sensing Reactive Oxygen Species with Photoacoustic Imaging Using Conjugation-Extended BODIPYs

Short-lived reactive intermediates such as reactive oxygen species (ROS) regulate many physiological processes, but overproduction can also lead to severe tissue dysfunction. Thus, there is a high demand for noninvasive detection of reactive molecules, which, however, is challenging. Herein, we repo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sensors 2021-12, Vol.6 (12), p.4379-4388
Hauptverfasser: Merkes, Jean Michél, Hasenbach, Alexa, Kiessling, Fabian, Hermann, Sven, Banala, Srinivas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4388
container_issue 12
container_start_page 4379
container_title ACS sensors
container_volume 6
creator Merkes, Jean Michél
Hasenbach, Alexa
Kiessling, Fabian
Hermann, Sven
Banala, Srinivas
description Short-lived reactive intermediates such as reactive oxygen species (ROS) regulate many physiological processes, but overproduction can also lead to severe tissue dysfunction. Thus, there is a high demand for noninvasive detection of reactive molecules, which, however, is challenging. Herein, we report photoacoustic detection of ROS using conjugated BODIPY probes (ROS-BODIPYs). The ROS reaction with conjugated BODIPYs induced a redshift in absorption by ∼100 nm into the near infrared (from ∼700 to ∼800 nm), quenched fluorescence, and generated strong photoacoustic (PA) signals. Thus, the ROS-activated and ROS-nonactivated states of ROS-BODIPYs can be detected in vivo by PA and fluorescence imaging. Interestingly, ROS activation is reversible, in the presence of excess reducing agents, e.g., citric acid, converted back to its original state, suggesting that ROS-BODIPYs can be useful for the detection of over production of ROS but not physiological amounts. This makes the imaging independent of accumulation of the activated probe with the physiological ROS amounts and thus strongly improves applicability and highlights the translational potential of ROS-BODIPYs for detecting overexpression of ROS in vivo by optical and photoacoustic imaging methods.
doi_str_mv 10.1021/acssensors.1c01674
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2610084343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2610084343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-e3789bd17a019bdb85a2c0cc7b6e6803521c5d0c385c2a2082580aed8e9c10593</originalsourceid><addsrcrecordid>eNpNkE1PwkAQhjdGIwT5Ax5Mj16Ks7v92B4VUUlIICIHD6bZboeyBLrY3Sr8e4vgx-mdwzxvZh5CLin0KDB6I5W1WFpT2R5VQKM4OCFtxuPE51ESnP6bW6Rr7RIAaBixUMA5afFAJILGtE3epk2JLgvvGaVy-gO98XZXYOlNN6g0Wu9Tu4U3WRhnpDK1dVp5w7Us9sjsG-ybclkX0mlT-oOtwzLH3Lsb3w8nr_aCnM3lymL3mB0yexi89J_80fhx2L8d-YoDdz7yWCRZTmMJtMlMhJIpUCrOIowE8JBRFeaguAgVkwzE_g2JucBEUQgT3iHXh95NZd5rtC5da6twtZIlNkenLKIAIuABb1bZYVVVxtoK5-mm0mtZ7VIK6d5s-mc2PZptoKtjf52tMf9FfjzyLx76d5s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610084343</pqid></control><display><type>article</type><title>Sensing Reactive Oxygen Species with Photoacoustic Imaging Using Conjugation-Extended BODIPYs</title><source>MEDLINE</source><source>ACS Publications</source><creator>Merkes, Jean Michél ; Hasenbach, Alexa ; Kiessling, Fabian ; Hermann, Sven ; Banala, Srinivas</creator><creatorcontrib>Merkes, Jean Michél ; Hasenbach, Alexa ; Kiessling, Fabian ; Hermann, Sven ; Banala, Srinivas</creatorcontrib><description>Short-lived reactive intermediates such as reactive oxygen species (ROS) regulate many physiological processes, but overproduction can also lead to severe tissue dysfunction. Thus, there is a high demand for noninvasive detection of reactive molecules, which, however, is challenging. Herein, we report photoacoustic detection of ROS using conjugated BODIPY probes (ROS-BODIPYs). The ROS reaction with conjugated BODIPYs induced a redshift in absorption by ∼100 nm into the near infrared (from ∼700 to ∼800 nm), quenched fluorescence, and generated strong photoacoustic (PA) signals. Thus, the ROS-activated and ROS-nonactivated states of ROS-BODIPYs can be detected in vivo by PA and fluorescence imaging. Interestingly, ROS activation is reversible, in the presence of excess reducing agents, e.g., citric acid, converted back to its original state, suggesting that ROS-BODIPYs can be useful for the detection of over production of ROS but not physiological amounts. This makes the imaging independent of accumulation of the activated probe with the physiological ROS amounts and thus strongly improves applicability and highlights the translational potential of ROS-BODIPYs for detecting overexpression of ROS in vivo by optical and photoacoustic imaging methods.</description><identifier>ISSN: 2379-3694</identifier><identifier>EISSN: 2379-3694</identifier><identifier>DOI: 10.1021/acssensors.1c01674</identifier><identifier>PMID: 34898171</identifier><language>eng</language><publisher>United States</publisher><subject>Boron Compounds ; Optical Imaging ; Photoacoustic Techniques ; Reactive Oxygen Species</subject><ispartof>ACS sensors, 2021-12, Vol.6 (12), p.4379-4388</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-e3789bd17a019bdb85a2c0cc7b6e6803521c5d0c385c2a2082580aed8e9c10593</citedby><cites>FETCH-LOGICAL-c303t-e3789bd17a019bdb85a2c0cc7b6e6803521c5d0c385c2a2082580aed8e9c10593</cites><orcidid>0000-0002-7341-0399 ; 0000-0003-3562-377X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2751,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34898171$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Merkes, Jean Michél</creatorcontrib><creatorcontrib>Hasenbach, Alexa</creatorcontrib><creatorcontrib>Kiessling, Fabian</creatorcontrib><creatorcontrib>Hermann, Sven</creatorcontrib><creatorcontrib>Banala, Srinivas</creatorcontrib><title>Sensing Reactive Oxygen Species with Photoacoustic Imaging Using Conjugation-Extended BODIPYs</title><title>ACS sensors</title><addtitle>ACS Sens</addtitle><description>Short-lived reactive intermediates such as reactive oxygen species (ROS) regulate many physiological processes, but overproduction can also lead to severe tissue dysfunction. Thus, there is a high demand for noninvasive detection of reactive molecules, which, however, is challenging. Herein, we report photoacoustic detection of ROS using conjugated BODIPY probes (ROS-BODIPYs). The ROS reaction with conjugated BODIPYs induced a redshift in absorption by ∼100 nm into the near infrared (from ∼700 to ∼800 nm), quenched fluorescence, and generated strong photoacoustic (PA) signals. Thus, the ROS-activated and ROS-nonactivated states of ROS-BODIPYs can be detected in vivo by PA and fluorescence imaging. Interestingly, ROS activation is reversible, in the presence of excess reducing agents, e.g., citric acid, converted back to its original state, suggesting that ROS-BODIPYs can be useful for the detection of over production of ROS but not physiological amounts. This makes the imaging independent of accumulation of the activated probe with the physiological ROS amounts and thus strongly improves applicability and highlights the translational potential of ROS-BODIPYs for detecting overexpression of ROS in vivo by optical and photoacoustic imaging methods.</description><subject>Boron Compounds</subject><subject>Optical Imaging</subject><subject>Photoacoustic Techniques</subject><subject>Reactive Oxygen Species</subject><issn>2379-3694</issn><issn>2379-3694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkE1PwkAQhjdGIwT5Ax5Mj16Ks7v92B4VUUlIICIHD6bZboeyBLrY3Sr8e4vgx-mdwzxvZh5CLin0KDB6I5W1WFpT2R5VQKM4OCFtxuPE51ESnP6bW6Rr7RIAaBixUMA5afFAJILGtE3epk2JLgvvGaVy-gO98XZXYOlNN6g0Wu9Tu4U3WRhnpDK1dVp5w7Us9sjsG-ybclkX0mlT-oOtwzLH3Lsb3w8nr_aCnM3lymL3mB0yexi89J_80fhx2L8d-YoDdz7yWCRZTmMJtMlMhJIpUCrOIowE8JBRFeaguAgVkwzE_g2JucBEUQgT3iHXh95NZd5rtC5da6twtZIlNkenLKIAIuABb1bZYVVVxtoK5-mm0mtZ7VIK6d5s-mc2PZptoKtjf52tMf9FfjzyLx76d5s</recordid><startdate>20211224</startdate><enddate>20211224</enddate><creator>Merkes, Jean Michél</creator><creator>Hasenbach, Alexa</creator><creator>Kiessling, Fabian</creator><creator>Hermann, Sven</creator><creator>Banala, Srinivas</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7341-0399</orcidid><orcidid>https://orcid.org/0000-0003-3562-377X</orcidid></search><sort><creationdate>20211224</creationdate><title>Sensing Reactive Oxygen Species with Photoacoustic Imaging Using Conjugation-Extended BODIPYs</title><author>Merkes, Jean Michél ; Hasenbach, Alexa ; Kiessling, Fabian ; Hermann, Sven ; Banala, Srinivas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-e3789bd17a019bdb85a2c0cc7b6e6803521c5d0c385c2a2082580aed8e9c10593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boron Compounds</topic><topic>Optical Imaging</topic><topic>Photoacoustic Techniques</topic><topic>Reactive Oxygen Species</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merkes, Jean Michél</creatorcontrib><creatorcontrib>Hasenbach, Alexa</creatorcontrib><creatorcontrib>Kiessling, Fabian</creatorcontrib><creatorcontrib>Hermann, Sven</creatorcontrib><creatorcontrib>Banala, Srinivas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merkes, Jean Michél</au><au>Hasenbach, Alexa</au><au>Kiessling, Fabian</au><au>Hermann, Sven</au><au>Banala, Srinivas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensing Reactive Oxygen Species with Photoacoustic Imaging Using Conjugation-Extended BODIPYs</atitle><jtitle>ACS sensors</jtitle><addtitle>ACS Sens</addtitle><date>2021-12-24</date><risdate>2021</risdate><volume>6</volume><issue>12</issue><spage>4379</spage><epage>4388</epage><pages>4379-4388</pages><issn>2379-3694</issn><eissn>2379-3694</eissn><abstract>Short-lived reactive intermediates such as reactive oxygen species (ROS) regulate many physiological processes, but overproduction can also lead to severe tissue dysfunction. Thus, there is a high demand for noninvasive detection of reactive molecules, which, however, is challenging. Herein, we report photoacoustic detection of ROS using conjugated BODIPY probes (ROS-BODIPYs). The ROS reaction with conjugated BODIPYs induced a redshift in absorption by ∼100 nm into the near infrared (from ∼700 to ∼800 nm), quenched fluorescence, and generated strong photoacoustic (PA) signals. Thus, the ROS-activated and ROS-nonactivated states of ROS-BODIPYs can be detected in vivo by PA and fluorescence imaging. Interestingly, ROS activation is reversible, in the presence of excess reducing agents, e.g., citric acid, converted back to its original state, suggesting that ROS-BODIPYs can be useful for the detection of over production of ROS but not physiological amounts. This makes the imaging independent of accumulation of the activated probe with the physiological ROS amounts and thus strongly improves applicability and highlights the translational potential of ROS-BODIPYs for detecting overexpression of ROS in vivo by optical and photoacoustic imaging methods.</abstract><cop>United States</cop><pmid>34898171</pmid><doi>10.1021/acssensors.1c01674</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7341-0399</orcidid><orcidid>https://orcid.org/0000-0003-3562-377X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2379-3694
ispartof ACS sensors, 2021-12, Vol.6 (12), p.4379-4388
issn 2379-3694
2379-3694
language eng
recordid cdi_proquest_miscellaneous_2610084343
source MEDLINE; ACS Publications
subjects Boron Compounds
Optical Imaging
Photoacoustic Techniques
Reactive Oxygen Species
title Sensing Reactive Oxygen Species with Photoacoustic Imaging Using Conjugation-Extended BODIPYs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A42%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensing%20Reactive%20Oxygen%20Species%20with%20Photoacoustic%20Imaging%20Using%20Conjugation-Extended%20BODIPYs&rft.jtitle=ACS%20sensors&rft.au=Merkes,%20Jean%20Mich%C3%A9l&rft.date=2021-12-24&rft.volume=6&rft.issue=12&rft.spage=4379&rft.epage=4388&rft.pages=4379-4388&rft.issn=2379-3694&rft.eissn=2379-3694&rft_id=info:doi/10.1021/acssensors.1c01674&rft_dat=%3Cproquest_cross%3E2610084343%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610084343&rft_id=info:pmid/34898171&rfr_iscdi=true