How heterogeneity in connections and cycles matter for synchronization of complex networks

We analyze how the structure of complex networks of non-identical oscillators influences synchronization in the context of the Kuramoto model. The complex network metrics assortativity and clustering coefficient are used in order to generate network topologies of Erdös–Rényi, Watts–Strogatz, and Bar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2021-11, Vol.31 (11), p.113134-113134
Hauptverfasser: Lacerda, Juliana C., Freitas, Celso, Macau, Elbert E. N., Kurths, Jürgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113134
container_issue 11
container_start_page 113134
container_title Chaos (Woodbury, N.Y.)
container_volume 31
creator Lacerda, Juliana C.
Freitas, Celso
Macau, Elbert E. N.
Kurths, Jürgen
description We analyze how the structure of complex networks of non-identical oscillators influences synchronization in the context of the Kuramoto model. The complex network metrics assortativity and clustering coefficient are used in order to generate network topologies of Erdös–Rényi, Watts–Strogatz, and Barabási–Albert types that present high, intermediate, and low values of these metrics. We also employ the total dissonance metric for neighborhood similarity, which generalizes to networks the standard concept of dissonance between two non-identical coupled oscillators. Based on this quantifier and using an optimization algorithm, we generate Similar, Dissimilar, and Neutral natural frequency patterns, which correspond to small, large, and intermediate values of total dissonance, respectively. The emergency of synchronization is numerically studied by considering these three types of dissonance patterns along with the network topologies generated by high, intermediate, and low values of the metrics assortativity and clustering coefficient. We find that, in general, low values of these metrics appear to favor phase locking, especially for the Similar dissonance pattern.
doi_str_mv 10.1063/5.0068136
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2610082223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598812200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-be78e174057fbce9a8a35a95840a78a768f03c12505ee11dcea335e6ccad91833</originalsourceid><addsrcrecordid>eNp90EFLwzAUB_AiCs7pwW8Q8KJC50uytOlRRJ0w8KIXLyFLX11nl9Skc9ZPb-uGgoKn9w6_9-fxj6JjCiMKCb8QI4BEUp7sRAMKMovTRLLdfhfjmAqA_egghAUAUMbFIHqauDWZY4PePaPFsmlJaYlx1qJpSmcD0TYnpjUVBrLUTQdJ4TwJrTVz72z5oXtGXNEdLesK34nFZu38SziM9gpdBTzazmH0eHP9cDWJp_e3d1eX09jwTDTxDFOJNB2DSIuZwUxLzYXOhByDTqXu_i-AG8oECERKc4Oac4GJMTrPqOR8GJ1ucmvvXlcYGrUsg8Gq0hbdKiiWUADJGOvpyS-6cCtvu-8UE5mUlDGATp1tlPEuBI-Fqn251L5VFFTfshJq23Jnzzc2mLL5quIbvzn_A1WdF__hv8mfSMGLkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598812200</pqid></control><display><type>article</type><title>How heterogeneity in connections and cycles matter for synchronization of complex networks</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Lacerda, Juliana C. ; Freitas, Celso ; Macau, Elbert E. N. ; Kurths, Jürgen</creator><creatorcontrib>Lacerda, Juliana C. ; Freitas, Celso ; Macau, Elbert E. N. ; Kurths, Jürgen</creatorcontrib><description>We analyze how the structure of complex networks of non-identical oscillators influences synchronization in the context of the Kuramoto model. The complex network metrics assortativity and clustering coefficient are used in order to generate network topologies of Erdös–Rényi, Watts–Strogatz, and Barabási–Albert types that present high, intermediate, and low values of these metrics. We also employ the total dissonance metric for neighborhood similarity, which generalizes to networks the standard concept of dissonance between two non-identical coupled oscillators. Based on this quantifier and using an optimization algorithm, we generate Similar, Dissimilar, and Neutral natural frequency patterns, which correspond to small, large, and intermediate values of total dissonance, respectively. The emergency of synchronization is numerically studied by considering these three types of dissonance patterns along with the network topologies generated by high, intermediate, and low values of the metrics assortativity and clustering coefficient. We find that, in general, low values of these metrics appear to favor phase locking, especially for the Similar dissonance pattern.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/5.0068136</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Clustering ; Heterogeneity ; Locking ; Network topologies ; Optimization ; Oscillators ; Resonant frequencies ; Synchronism</subject><ispartof>Chaos (Woodbury, N.Y.), 2021-11, Vol.31 (11), p.113134-113134</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-be78e174057fbce9a8a35a95840a78a768f03c12505ee11dcea335e6ccad91833</citedby><cites>FETCH-LOGICAL-c395t-be78e174057fbce9a8a35a95840a78a768f03c12505ee11dcea335e6ccad91833</cites><orcidid>0000-0002-5291-3288 ; 0000-0002-6337-8081 ; 0000-0002-5926-4276 ; 0000-0003-1406-6759</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4502,27915,27916</link.rule.ids></links><search><creatorcontrib>Lacerda, Juliana C.</creatorcontrib><creatorcontrib>Freitas, Celso</creatorcontrib><creatorcontrib>Macau, Elbert E. N.</creatorcontrib><creatorcontrib>Kurths, Jürgen</creatorcontrib><title>How heterogeneity in connections and cycles matter for synchronization of complex networks</title><title>Chaos (Woodbury, N.Y.)</title><description>We analyze how the structure of complex networks of non-identical oscillators influences synchronization in the context of the Kuramoto model. The complex network metrics assortativity and clustering coefficient are used in order to generate network topologies of Erdös–Rényi, Watts–Strogatz, and Barabási–Albert types that present high, intermediate, and low values of these metrics. We also employ the total dissonance metric for neighborhood similarity, which generalizes to networks the standard concept of dissonance between two non-identical coupled oscillators. Based on this quantifier and using an optimization algorithm, we generate Similar, Dissimilar, and Neutral natural frequency patterns, which correspond to small, large, and intermediate values of total dissonance, respectively. The emergency of synchronization is numerically studied by considering these three types of dissonance patterns along with the network topologies generated by high, intermediate, and low values of the metrics assortativity and clustering coefficient. We find that, in general, low values of these metrics appear to favor phase locking, especially for the Similar dissonance pattern.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Heterogeneity</subject><subject>Locking</subject><subject>Network topologies</subject><subject>Optimization</subject><subject>Oscillators</subject><subject>Resonant frequencies</subject><subject>Synchronism</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90EFLwzAUB_AiCs7pwW8Q8KJC50uytOlRRJ0w8KIXLyFLX11nl9Skc9ZPb-uGgoKn9w6_9-fxj6JjCiMKCb8QI4BEUp7sRAMKMovTRLLdfhfjmAqA_egghAUAUMbFIHqauDWZY4PePaPFsmlJaYlx1qJpSmcD0TYnpjUVBrLUTQdJ4TwJrTVz72z5oXtGXNEdLesK34nFZu38SziM9gpdBTzazmH0eHP9cDWJp_e3d1eX09jwTDTxDFOJNB2DSIuZwUxLzYXOhByDTqXu_i-AG8oECERKc4Oac4GJMTrPqOR8GJ1ucmvvXlcYGrUsg8Gq0hbdKiiWUADJGOvpyS-6cCtvu-8UE5mUlDGATp1tlPEuBI-Fqn251L5VFFTfshJq23Jnzzc2mLL5quIbvzn_A1WdF__hv8mfSMGLkw</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Lacerda, Juliana C.</creator><creator>Freitas, Celso</creator><creator>Macau, Elbert E. N.</creator><creator>Kurths, Jürgen</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5291-3288</orcidid><orcidid>https://orcid.org/0000-0002-6337-8081</orcidid><orcidid>https://orcid.org/0000-0002-5926-4276</orcidid><orcidid>https://orcid.org/0000-0003-1406-6759</orcidid></search><sort><creationdate>202111</creationdate><title>How heterogeneity in connections and cycles matter for synchronization of complex networks</title><author>Lacerda, Juliana C. ; Freitas, Celso ; Macau, Elbert E. N. ; Kurths, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-be78e174057fbce9a8a35a95840a78a768f03c12505ee11dcea335e6ccad91833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Heterogeneity</topic><topic>Locking</topic><topic>Network topologies</topic><topic>Optimization</topic><topic>Oscillators</topic><topic>Resonant frequencies</topic><topic>Synchronism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lacerda, Juliana C.</creatorcontrib><creatorcontrib>Freitas, Celso</creatorcontrib><creatorcontrib>Macau, Elbert E. N.</creatorcontrib><creatorcontrib>Kurths, Jürgen</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lacerda, Juliana C.</au><au>Freitas, Celso</au><au>Macau, Elbert E. N.</au><au>Kurths, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How heterogeneity in connections and cycles matter for synchronization of complex networks</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><date>2021-11</date><risdate>2021</risdate><volume>31</volume><issue>11</issue><spage>113134</spage><epage>113134</epage><pages>113134-113134</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>We analyze how the structure of complex networks of non-identical oscillators influences synchronization in the context of the Kuramoto model. The complex network metrics assortativity and clustering coefficient are used in order to generate network topologies of Erdös–Rényi, Watts–Strogatz, and Barabási–Albert types that present high, intermediate, and low values of these metrics. We also employ the total dissonance metric for neighborhood similarity, which generalizes to networks the standard concept of dissonance between two non-identical coupled oscillators. Based on this quantifier and using an optimization algorithm, we generate Similar, Dissimilar, and Neutral natural frequency patterns, which correspond to small, large, and intermediate values of total dissonance, respectively. The emergency of synchronization is numerically studied by considering these three types of dissonance patterns along with the network topologies generated by high, intermediate, and low values of the metrics assortativity and clustering coefficient. We find that, in general, low values of these metrics appear to favor phase locking, especially for the Similar dissonance pattern.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0068136</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5291-3288</orcidid><orcidid>https://orcid.org/0000-0002-6337-8081</orcidid><orcidid>https://orcid.org/0000-0002-5926-4276</orcidid><orcidid>https://orcid.org/0000-0003-1406-6759</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2021-11, Vol.31 (11), p.113134-113134
issn 1054-1500
1089-7682
language eng
recordid cdi_proquest_miscellaneous_2610082223
source AIP Journals Complete; Alma/SFX Local Collection
subjects Algorithms
Clustering
Heterogeneity
Locking
Network topologies
Optimization
Oscillators
Resonant frequencies
Synchronism
title How heterogeneity in connections and cycles matter for synchronization of complex networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A39%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20heterogeneity%20in%20connections%20and%20cycles%20matter%20for%20synchronization%20of%20complex%20networks&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Lacerda,%20Juliana%20C.&rft.date=2021-11&rft.volume=31&rft.issue=11&rft.spage=113134&rft.epage=113134&rft.pages=113134-113134&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/5.0068136&rft_dat=%3Cproquest_cross%3E2598812200%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598812200&rft_id=info:pmid/&rfr_iscdi=true