Bryozoan carbonate skeletal geochemical composition in the White Sea compared with neighbouring seas
A fundamental question underlying skeletal mineral secretion in marine invertebrates is the extent to which the physico-chemical parameters of seawater (e.g., salinity, temperature) and animal physiology influence their skeletal mineralogy and chemistry. Groups with more complex mineralogies, such a...
Gespeichert in:
Veröffentlicht in: | Marine environmental research 2022-01, Vol.173, p.105542-105542, Article 105542 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105542 |
---|---|
container_issue | |
container_start_page | 105542 |
container_title | Marine environmental research |
container_volume | 173 |
creator | Krzemińska, Małgorzata Piwoni-Piórewicz, Anna Shunatova, Natalia Duczmal-Czernikiewicz, Agata Muszyński, Andrzej Kubiak, Michał Kukliński, Piotr |
description | A fundamental question underlying skeletal mineral secretion in marine invertebrates is the extent to which the physico-chemical parameters of seawater (e.g., salinity, temperature) and animal physiology influence their skeletal mineralogy and chemistry. Groups with more complex mineralogies, such as bryozoans, have the ability to actively control their own skeletal composition in response to environmental conditions and could be considered indicators of global environmental change. Thus, this study aims to reveal how the unique environmental conditions of low salinity (circa 24–26), prominent seasonality and semi-isolation of the White Sea (WS) subarctic region caused by the last glaciation (12,000 ya) affect the carbonate skeletal geochemical composition of bryozoans. X-ray diffraction analysis of 27 bryozoan taxa (92 specimens) revealed a completely monomineral calcite composition of skeletons with a mean value of 6.9 ± 1.8 mol% MgCO3 and moderate variability at the species and family levels. Most specimens (43.5%) precipitated skeletal magnesium within the range of 7–8 mol% MgCO3. Regional analysis of the mineralogical profile of the White Sea bryozoans shows that they differ statistically from bryozoan species living in the neighbouring Arctic and temperate Scotland regions in terms of magnesium content in calcite (approximately 7 mol% MgCO3 in the White Sea versus 5 mol% MgCO3 in other regions). We suggest that the effect of low salinity on magnesium content was compensated by relatively high summer temperature causing rapid growth and calcification and possibly resulted in the increased Mg contents in the White Sea (WS) bryozoans. However, on a local scale (between sampling locations), the influence of temperature and salinity could be excluded as a source of observed intraspecific variability. The concentration of MgCO3 in skeletons of the studied bryozoans is controlled by other environmental variables or is species-specific and depends on the physiological processes of the organisms.
•Chemical composition of the White Sea bryozoans deviates from nearby regions.•Rapid summer calcification and growth stimulates high skeletal magnesium content.•Taxonomic/phylogenetic patterns controls skeletal magnesium content locally. |
doi_str_mv | 10.1016/j.marenvres.2021.105542 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2609460602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141113621002981</els_id><sourcerecordid>2636623432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-a4bdbdb0ed811897d4c57491415f64e154a24875642a1d8fae232476817a20b53</originalsourceid><addsrcrecordid>eNqNkU2PFCEQQInRuOPqX1ASL156pGga6OO6WT-STTyo8UhoqJlm7IYRetasv17GWffgRcMBUryqoniEvAC2Bgby9W4924zxJmNZc8ahRrtO8AdkBVr1DeM9PCQrBgIagFaekSel7BhjnYLuMTlrhe5lz2FF_Jt8m34mG6mzeUjRLkjLN5xwsRPdYnIjzsHVs0vzPpWwhBRpiHQZkX4dQ6U_of19Wd_j6Y-wjDRi2I5DOuQQt7SgLU_Jo42dCj6728_Jl7dXny_fN9cf3324vLhunGj50lgx-LoYeg2ge-WF65To6xDdRgqETlgutOqk4Ba83ljkLRdKalCWs6Frz8mrU919Tt8PWBYzh-JwmmzEdCiGy1ZK3tZm_4GyXkgm2RF9-Re6q7PFOkiluOi1UlpXSp0ol1MpGTdmn0OVdGuAmaMzszP3zszRmTk5q5nP7-ofhhn9fd4fSRW4OAFY_-4mYDbFBYwOfcjoFuNT-GeTXzXnq5E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624987788</pqid></control><display><type>article</type><title>Bryozoan carbonate skeletal geochemical composition in the White Sea compared with neighbouring seas</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Krzemińska, Małgorzata ; Piwoni-Piórewicz, Anna ; Shunatova, Natalia ; Duczmal-Czernikiewicz, Agata ; Muszyński, Andrzej ; Kubiak, Michał ; Kukliński, Piotr</creator><creatorcontrib>Krzemińska, Małgorzata ; Piwoni-Piórewicz, Anna ; Shunatova, Natalia ; Duczmal-Czernikiewicz, Agata ; Muszyński, Andrzej ; Kubiak, Michał ; Kukliński, Piotr</creatorcontrib><description>A fundamental question underlying skeletal mineral secretion in marine invertebrates is the extent to which the physico-chemical parameters of seawater (e.g., salinity, temperature) and animal physiology influence their skeletal mineralogy and chemistry. Groups with more complex mineralogies, such as bryozoans, have the ability to actively control their own skeletal composition in response to environmental conditions and could be considered indicators of global environmental change. Thus, this study aims to reveal how the unique environmental conditions of low salinity (circa 24–26), prominent seasonality and semi-isolation of the White Sea (WS) subarctic region caused by the last glaciation (12,000 ya) affect the carbonate skeletal geochemical composition of bryozoans. X-ray diffraction analysis of 27 bryozoan taxa (92 specimens) revealed a completely monomineral calcite composition of skeletons with a mean value of 6.9 ± 1.8 mol% MgCO3 and moderate variability at the species and family levels. Most specimens (43.5%) precipitated skeletal magnesium within the range of 7–8 mol% MgCO3. Regional analysis of the mineralogical profile of the White Sea bryozoans shows that they differ statistically from bryozoan species living in the neighbouring Arctic and temperate Scotland regions in terms of magnesium content in calcite (approximately 7 mol% MgCO3 in the White Sea versus 5 mol% MgCO3 in other regions). We suggest that the effect of low salinity on magnesium content was compensated by relatively high summer temperature causing rapid growth and calcification and possibly resulted in the increased Mg contents in the White Sea (WS) bryozoans. However, on a local scale (between sampling locations), the influence of temperature and salinity could be excluded as a source of observed intraspecific variability. The concentration of MgCO3 in skeletons of the studied bryozoans is controlled by other environmental variables or is species-specific and depends on the physiological processes of the organisms.
•Chemical composition of the White Sea bryozoans deviates from nearby regions.•Rapid summer calcification and growth stimulates high skeletal magnesium content.•Taxonomic/phylogenetic patterns controls skeletal magnesium content locally.</description><identifier>ISSN: 0141-1136</identifier><identifier>EISSN: 1879-0291</identifier><identifier>DOI: 10.1016/j.marenvres.2021.105542</identifier><identifier>PMID: 34896921</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animal physiology ; Animals ; Arctic region ; Biomineralogy ; Bryozoa ; Calcification ; Calcite ; Calcium Carbonate ; Carbonates ; Chemical analysis ; Cold regions ; Composition ; Environmental changes ; Environmental conditions ; family ; Geochemistry ; Glaciation ; Glaciology ; global change ; intraspecific variation ; Magnesium ; Magnesium carbonate ; Marine invertebrates ; Mineralogy ; Oceans and Seas ; Polar environments ; Regional analysis ; Regional planning ; Salinity ; Salinity effects ; Scotland ; Seasonal variations ; Seasonality ; Seawater ; Secretion ; Skeletal magnesium ; Species ; summer ; temperature ; Variability ; Water analysis ; White Sea ; X-ray diffraction ; X-ray diffraction analysis</subject><ispartof>Marine environmental research, 2022-01, Vol.173, p.105542-105542, Article 105542</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV Jan 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-a4bdbdb0ed811897d4c57491415f64e154a24875642a1d8fae232476817a20b53</citedby><cites>FETCH-LOGICAL-c432t-a4bdbdb0ed811897d4c57491415f64e154a24875642a1d8fae232476817a20b53</cites><orcidid>0000-0003-1593-7552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0141113621002981$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34896921$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krzemińska, Małgorzata</creatorcontrib><creatorcontrib>Piwoni-Piórewicz, Anna</creatorcontrib><creatorcontrib>Shunatova, Natalia</creatorcontrib><creatorcontrib>Duczmal-Czernikiewicz, Agata</creatorcontrib><creatorcontrib>Muszyński, Andrzej</creatorcontrib><creatorcontrib>Kubiak, Michał</creatorcontrib><creatorcontrib>Kukliński, Piotr</creatorcontrib><title>Bryozoan carbonate skeletal geochemical composition in the White Sea compared with neighbouring seas</title><title>Marine environmental research</title><addtitle>Mar Environ Res</addtitle><description>A fundamental question underlying skeletal mineral secretion in marine invertebrates is the extent to which the physico-chemical parameters of seawater (e.g., salinity, temperature) and animal physiology influence their skeletal mineralogy and chemistry. Groups with more complex mineralogies, such as bryozoans, have the ability to actively control their own skeletal composition in response to environmental conditions and could be considered indicators of global environmental change. Thus, this study aims to reveal how the unique environmental conditions of low salinity (circa 24–26), prominent seasonality and semi-isolation of the White Sea (WS) subarctic region caused by the last glaciation (12,000 ya) affect the carbonate skeletal geochemical composition of bryozoans. X-ray diffraction analysis of 27 bryozoan taxa (92 specimens) revealed a completely monomineral calcite composition of skeletons with a mean value of 6.9 ± 1.8 mol% MgCO3 and moderate variability at the species and family levels. Most specimens (43.5%) precipitated skeletal magnesium within the range of 7–8 mol% MgCO3. Regional analysis of the mineralogical profile of the White Sea bryozoans shows that they differ statistically from bryozoan species living in the neighbouring Arctic and temperate Scotland regions in terms of magnesium content in calcite (approximately 7 mol% MgCO3 in the White Sea versus 5 mol% MgCO3 in other regions). We suggest that the effect of low salinity on magnesium content was compensated by relatively high summer temperature causing rapid growth and calcification and possibly resulted in the increased Mg contents in the White Sea (WS) bryozoans. However, on a local scale (between sampling locations), the influence of temperature and salinity could be excluded as a source of observed intraspecific variability. The concentration of MgCO3 in skeletons of the studied bryozoans is controlled by other environmental variables or is species-specific and depends on the physiological processes of the organisms.
•Chemical composition of the White Sea bryozoans deviates from nearby regions.•Rapid summer calcification and growth stimulates high skeletal magnesium content.•Taxonomic/phylogenetic patterns controls skeletal magnesium content locally.</description><subject>Animal physiology</subject><subject>Animals</subject><subject>Arctic region</subject><subject>Biomineralogy</subject><subject>Bryozoa</subject><subject>Calcification</subject><subject>Calcite</subject><subject>Calcium Carbonate</subject><subject>Carbonates</subject><subject>Chemical analysis</subject><subject>Cold regions</subject><subject>Composition</subject><subject>Environmental changes</subject><subject>Environmental conditions</subject><subject>family</subject><subject>Geochemistry</subject><subject>Glaciation</subject><subject>Glaciology</subject><subject>global change</subject><subject>intraspecific variation</subject><subject>Magnesium</subject><subject>Magnesium carbonate</subject><subject>Marine invertebrates</subject><subject>Mineralogy</subject><subject>Oceans and Seas</subject><subject>Polar environments</subject><subject>Regional analysis</subject><subject>Regional planning</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Scotland</subject><subject>Seasonal variations</subject><subject>Seasonality</subject><subject>Seawater</subject><subject>Secretion</subject><subject>Skeletal magnesium</subject><subject>Species</subject><subject>summer</subject><subject>temperature</subject><subject>Variability</subject><subject>Water analysis</subject><subject>White Sea</subject><subject>X-ray diffraction</subject><subject>X-ray diffraction analysis</subject><issn>0141-1136</issn><issn>1879-0291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU2PFCEQQInRuOPqX1ASL156pGga6OO6WT-STTyo8UhoqJlm7IYRetasv17GWffgRcMBUryqoniEvAC2Bgby9W4924zxJmNZc8ahRrtO8AdkBVr1DeM9PCQrBgIagFaekSel7BhjnYLuMTlrhe5lz2FF_Jt8m34mG6mzeUjRLkjLN5xwsRPdYnIjzsHVs0vzPpWwhBRpiHQZkX4dQ6U_of19Wd_j6Y-wjDRi2I5DOuQQt7SgLU_Jo42dCj6728_Jl7dXny_fN9cf3324vLhunGj50lgx-LoYeg2ge-WF65To6xDdRgqETlgutOqk4Ba83ljkLRdKalCWs6Frz8mrU919Tt8PWBYzh-JwmmzEdCiGy1ZK3tZm_4GyXkgm2RF9-Re6q7PFOkiluOi1UlpXSp0ol1MpGTdmn0OVdGuAmaMzszP3zszRmTk5q5nP7-ofhhn9fd4fSRW4OAFY_-4mYDbFBYwOfcjoFuNT-GeTXzXnq5E</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Krzemińska, Małgorzata</creator><creator>Piwoni-Piórewicz, Anna</creator><creator>Shunatova, Natalia</creator><creator>Duczmal-Czernikiewicz, Agata</creator><creator>Muszyński, Andrzej</creator><creator>Kubiak, Michał</creator><creator>Kukliński, Piotr</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>7T5</scope><scope>7TN</scope><scope>7U7</scope><scope>C1K</scope><scope>F1W</scope><scope>H94</scope><scope>M7N</scope><scope>SOI</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-1593-7552</orcidid></search><sort><creationdate>202201</creationdate><title>Bryozoan carbonate skeletal geochemical composition in the White Sea compared with neighbouring seas</title><author>Krzemińska, Małgorzata ; Piwoni-Piórewicz, Anna ; Shunatova, Natalia ; Duczmal-Czernikiewicz, Agata ; Muszyński, Andrzej ; Kubiak, Michał ; Kukliński, Piotr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-a4bdbdb0ed811897d4c57491415f64e154a24875642a1d8fae232476817a20b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animal physiology</topic><topic>Animals</topic><topic>Arctic region</topic><topic>Biomineralogy</topic><topic>Bryozoa</topic><topic>Calcification</topic><topic>Calcite</topic><topic>Calcium Carbonate</topic><topic>Carbonates</topic><topic>Chemical analysis</topic><topic>Cold regions</topic><topic>Composition</topic><topic>Environmental changes</topic><topic>Environmental conditions</topic><topic>family</topic><topic>Geochemistry</topic><topic>Glaciation</topic><topic>Glaciology</topic><topic>global change</topic><topic>intraspecific variation</topic><topic>Magnesium</topic><topic>Magnesium carbonate</topic><topic>Marine invertebrates</topic><topic>Mineralogy</topic><topic>Oceans and Seas</topic><topic>Polar environments</topic><topic>Regional analysis</topic><topic>Regional planning</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Scotland</topic><topic>Seasonal variations</topic><topic>Seasonality</topic><topic>Seawater</topic><topic>Secretion</topic><topic>Skeletal magnesium</topic><topic>Species</topic><topic>summer</topic><topic>temperature</topic><topic>Variability</topic><topic>Water analysis</topic><topic>White Sea</topic><topic>X-ray diffraction</topic><topic>X-ray diffraction analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krzemińska, Małgorzata</creatorcontrib><creatorcontrib>Piwoni-Piórewicz, Anna</creatorcontrib><creatorcontrib>Shunatova, Natalia</creatorcontrib><creatorcontrib>Duczmal-Czernikiewicz, Agata</creatorcontrib><creatorcontrib>Muszyński, Andrzej</creatorcontrib><creatorcontrib>Kubiak, Michał</creatorcontrib><creatorcontrib>Kukliński, Piotr</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Marine environmental research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krzemińska, Małgorzata</au><au>Piwoni-Piórewicz, Anna</au><au>Shunatova, Natalia</au><au>Duczmal-Czernikiewicz, Agata</au><au>Muszyński, Andrzej</au><au>Kubiak, Michał</au><au>Kukliński, Piotr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bryozoan carbonate skeletal geochemical composition in the White Sea compared with neighbouring seas</atitle><jtitle>Marine environmental research</jtitle><addtitle>Mar Environ Res</addtitle><date>2022-01</date><risdate>2022</risdate><volume>173</volume><spage>105542</spage><epage>105542</epage><pages>105542-105542</pages><artnum>105542</artnum><issn>0141-1136</issn><eissn>1879-0291</eissn><abstract>A fundamental question underlying skeletal mineral secretion in marine invertebrates is the extent to which the physico-chemical parameters of seawater (e.g., salinity, temperature) and animal physiology influence their skeletal mineralogy and chemistry. Groups with more complex mineralogies, such as bryozoans, have the ability to actively control their own skeletal composition in response to environmental conditions and could be considered indicators of global environmental change. Thus, this study aims to reveal how the unique environmental conditions of low salinity (circa 24–26), prominent seasonality and semi-isolation of the White Sea (WS) subarctic region caused by the last glaciation (12,000 ya) affect the carbonate skeletal geochemical composition of bryozoans. X-ray diffraction analysis of 27 bryozoan taxa (92 specimens) revealed a completely monomineral calcite composition of skeletons with a mean value of 6.9 ± 1.8 mol% MgCO3 and moderate variability at the species and family levels. Most specimens (43.5%) precipitated skeletal magnesium within the range of 7–8 mol% MgCO3. Regional analysis of the mineralogical profile of the White Sea bryozoans shows that they differ statistically from bryozoan species living in the neighbouring Arctic and temperate Scotland regions in terms of magnesium content in calcite (approximately 7 mol% MgCO3 in the White Sea versus 5 mol% MgCO3 in other regions). We suggest that the effect of low salinity on magnesium content was compensated by relatively high summer temperature causing rapid growth and calcification and possibly resulted in the increased Mg contents in the White Sea (WS) bryozoans. However, on a local scale (between sampling locations), the influence of temperature and salinity could be excluded as a source of observed intraspecific variability. The concentration of MgCO3 in skeletons of the studied bryozoans is controlled by other environmental variables or is species-specific and depends on the physiological processes of the organisms.
•Chemical composition of the White Sea bryozoans deviates from nearby regions.•Rapid summer calcification and growth stimulates high skeletal magnesium content.•Taxonomic/phylogenetic patterns controls skeletal magnesium content locally.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>34896921</pmid><doi>10.1016/j.marenvres.2021.105542</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1593-7552</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-1136 |
ispartof | Marine environmental research, 2022-01, Vol.173, p.105542-105542, Article 105542 |
issn | 0141-1136 1879-0291 |
language | eng |
recordid | cdi_proquest_miscellaneous_2609460602 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animal physiology Animals Arctic region Biomineralogy Bryozoa Calcification Calcite Calcium Carbonate Carbonates Chemical analysis Cold regions Composition Environmental changes Environmental conditions family Geochemistry Glaciation Glaciology global change intraspecific variation Magnesium Magnesium carbonate Marine invertebrates Mineralogy Oceans and Seas Polar environments Regional analysis Regional planning Salinity Salinity effects Scotland Seasonal variations Seasonality Seawater Secretion Skeletal magnesium Species summer temperature Variability Water analysis White Sea X-ray diffraction X-ray diffraction analysis |
title | Bryozoan carbonate skeletal geochemical composition in the White Sea compared with neighbouring seas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A25%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bryozoan%20carbonate%20skeletal%20geochemical%20composition%20in%20the%20White%20Sea%20compared%20with%20neighbouring%20seas&rft.jtitle=Marine%20environmental%20research&rft.au=Krzemi%C5%84ska,%20Ma%C5%82gorzata&rft.date=2022-01&rft.volume=173&rft.spage=105542&rft.epage=105542&rft.pages=105542-105542&rft.artnum=105542&rft.issn=0141-1136&rft.eissn=1879-0291&rft_id=info:doi/10.1016/j.marenvres.2021.105542&rft_dat=%3Cproquest_cross%3E2636623432%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624987788&rft_id=info:pmid/34896921&rft_els_id=S0141113621002981&rfr_iscdi=true |