Self‐Optimizing Effect in Lithium Storage of GeO2 Induced by Heterointerface Regulation
Herein, a heterostructural hexagonal@tetragonal GeO2 (HT‐GeO2) composite has been designed based on density functional theory (DFT) calculations and synthesized via an acidic‐heating route dealt with rapid cooling, where the inner hexagonal GeO2 (H‐GeO2) phase is covered by a porous layer of tetrago...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-01, Vol.18 (4), p.e2106067-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | e2106067 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 18 |
creator | Wu, Junxiu Tang, Anwen Wang, Kaihong Huang, Shuping Wei, Mingdeng |
description | Herein, a heterostructural hexagonal@tetragonal GeO2 (HT‐GeO2) composite has been designed based on density functional theory (DFT) calculations and synthesized via an acidic‐heating route dealt with rapid cooling, where the inner hexagonal GeO2 (H‐GeO2) phase is covered by a porous layer of tetragonal GeO2 (T‐GeO2) owing to HF etching. Interestingly, the HT‐GeO2 electrode has a self‐optimizing effect in lithium storage induced by heterointerface regulation, where the porous T‐GeO2 layer on the surface of HT‐GeO2 can act as not only a Li+/electron conducting layer, but also a buffer layer, while the inner H‐GeO2 phase can react preferentially with Li ions owing to lower intercalation energy, which is confirmed by operando XRD measurement contributing to thorough lithiation for HT‐GeO2. Moreover, the heterointerface can enhance the pseudocapacitance effect, which can boost the Li storage and accelerate the discharge‐charge process. As a result, a large capacity of 984 mAh g−1 after 500 cycles at 2 A g−1 and a capacity of 430 mAh g−1 at a high current density of 20 A g−1 are delivered. This work provides an easy and efficient way to improve the cycling stability of the GeO2 anode, and the T‐GeO2 phase would be a novel anode material in energy storage devices.
A heterostruturally hexagonal@tetragonal GeO2 (HT‐GeO2) is obatined via an acidic‐heating route dealt with rapid cooling, and displays a self‐optimizing effect in lithium‐ion storage induced by heterointerface regulation, in which the kinetics is accelerated and electrochemical properties are enhanced significantly. |
doi_str_mv | 10.1002/smll.202106067 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2608542128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608542128</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2667-d6b6393b37be54a7ae014465c183040477c2b4703e540bf36dcf695fc33c7d813</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFavnhe8eEndr-wmRym1LUQKVg-elmQzW7dsPswHUk_-BH-jv8SUSg9eZuZlHobhQeiakgklhN21hfcTRhglkkh1gkZUUh7IiMWnx5mSc3TRtltCOGVCjdDrGrz9-fpe1Z0r3KcrN3hmLZgOuxInrntzfYHXXdWkG8CVxXNYMbws895AjrMdXkAHTeXKodrUAH6CTe_TzlXlJTqzqW_h6q-P0cvD7Hm6CJLVfDm9T4KaSamCXGaSxzzjKoNQpCoFQoWQoaERJ4IIpQzLhCJ82JLMcpkbK-PQGs6NyiPKx-j2cLduqvce2k4XrjXgfVpC1beaSRKFglEWDejNP3Rb9U05fDdQjEWxlGE4UPGB-nAedrpuXJE2O02J3mvWe836qFmvH5PkmPgv9mhzGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622896655</pqid></control><display><type>article</type><title>Self‐Optimizing Effect in Lithium Storage of GeO2 Induced by Heterointerface Regulation</title><source>Wiley-Blackwell Journals</source><creator>Wu, Junxiu ; Tang, Anwen ; Wang, Kaihong ; Huang, Shuping ; Wei, Mingdeng</creator><creatorcontrib>Wu, Junxiu ; Tang, Anwen ; Wang, Kaihong ; Huang, Shuping ; Wei, Mingdeng</creatorcontrib><description>Herein, a heterostructural hexagonal@tetragonal GeO2 (HT‐GeO2) composite has been designed based on density functional theory (DFT) calculations and synthesized via an acidic‐heating route dealt with rapid cooling, where the inner hexagonal GeO2 (H‐GeO2) phase is covered by a porous layer of tetragonal GeO2 (T‐GeO2) owing to HF etching. Interestingly, the HT‐GeO2 electrode has a self‐optimizing effect in lithium storage induced by heterointerface regulation, where the porous T‐GeO2 layer on the surface of HT‐GeO2 can act as not only a Li+/electron conducting layer, but also a buffer layer, while the inner H‐GeO2 phase can react preferentially with Li ions owing to lower intercalation energy, which is confirmed by operando XRD measurement contributing to thorough lithiation for HT‐GeO2. Moreover, the heterointerface can enhance the pseudocapacitance effect, which can boost the Li storage and accelerate the discharge‐charge process. As a result, a large capacity of 984 mAh g−1 after 500 cycles at 2 A g−1 and a capacity of 430 mAh g−1 at a high current density of 20 A g−1 are delivered. This work provides an easy and efficient way to improve the cycling stability of the GeO2 anode, and the T‐GeO2 phase would be a novel anode material in energy storage devices.
A heterostruturally hexagonal@tetragonal GeO2 (HT‐GeO2) is obatined via an acidic‐heating route dealt with rapid cooling, and displays a self‐optimizing effect in lithium‐ion storage induced by heterointerface regulation, in which the kinetics is accelerated and electrochemical properties are enhanced significantly.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202106067</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Buffer layers ; Density functional theory ; Electrode materials ; Energy storage ; Germanium oxides ; heterointerfaces ; hexagonal@tetragonal GeO 2 ; Lithium ; lithium storage ; Nanotechnology ; self‐optimizing effect</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-01, Vol.18 (4), p.e2106067-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4516-7966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202106067$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202106067$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Wu, Junxiu</creatorcontrib><creatorcontrib>Tang, Anwen</creatorcontrib><creatorcontrib>Wang, Kaihong</creatorcontrib><creatorcontrib>Huang, Shuping</creatorcontrib><creatorcontrib>Wei, Mingdeng</creatorcontrib><title>Self‐Optimizing Effect in Lithium Storage of GeO2 Induced by Heterointerface Regulation</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Herein, a heterostructural hexagonal@tetragonal GeO2 (HT‐GeO2) composite has been designed based on density functional theory (DFT) calculations and synthesized via an acidic‐heating route dealt with rapid cooling, where the inner hexagonal GeO2 (H‐GeO2) phase is covered by a porous layer of tetragonal GeO2 (T‐GeO2) owing to HF etching. Interestingly, the HT‐GeO2 electrode has a self‐optimizing effect in lithium storage induced by heterointerface regulation, where the porous T‐GeO2 layer on the surface of HT‐GeO2 can act as not only a Li+/electron conducting layer, but also a buffer layer, while the inner H‐GeO2 phase can react preferentially with Li ions owing to lower intercalation energy, which is confirmed by operando XRD measurement contributing to thorough lithiation for HT‐GeO2. Moreover, the heterointerface can enhance the pseudocapacitance effect, which can boost the Li storage and accelerate the discharge‐charge process. As a result, a large capacity of 984 mAh g−1 after 500 cycles at 2 A g−1 and a capacity of 430 mAh g−1 at a high current density of 20 A g−1 are delivered. This work provides an easy and efficient way to improve the cycling stability of the GeO2 anode, and the T‐GeO2 phase would be a novel anode material in energy storage devices.
A heterostruturally hexagonal@tetragonal GeO2 (HT‐GeO2) is obatined via an acidic‐heating route dealt with rapid cooling, and displays a self‐optimizing effect in lithium‐ion storage induced by heterointerface regulation, in which the kinetics is accelerated and electrochemical properties are enhanced significantly.</description><subject>Anodes</subject><subject>Buffer layers</subject><subject>Density functional theory</subject><subject>Electrode materials</subject><subject>Energy storage</subject><subject>Germanium oxides</subject><subject>heterointerfaces</subject><subject>hexagonal@tetragonal GeO 2</subject><subject>Lithium</subject><subject>lithium storage</subject><subject>Nanotechnology</subject><subject>self‐optimizing effect</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRsFavnhe8eEndr-wmRym1LUQKVg-elmQzW7dsPswHUk_-BH-jv8SUSg9eZuZlHobhQeiakgklhN21hfcTRhglkkh1gkZUUh7IiMWnx5mSc3TRtltCOGVCjdDrGrz9-fpe1Z0r3KcrN3hmLZgOuxInrntzfYHXXdWkG8CVxXNYMbws895AjrMdXkAHTeXKodrUAH6CTe_TzlXlJTqzqW_h6q-P0cvD7Hm6CJLVfDm9T4KaSamCXGaSxzzjKoNQpCoFQoWQoaERJ4IIpQzLhCJ82JLMcpkbK-PQGs6NyiPKx-j2cLduqvce2k4XrjXgfVpC1beaSRKFglEWDejNP3Rb9U05fDdQjEWxlGE4UPGB-nAedrpuXJE2O02J3mvWe836qFmvH5PkmPgv9mhzGQ</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Wu, Junxiu</creator><creator>Tang, Anwen</creator><creator>Wang, Kaihong</creator><creator>Huang, Shuping</creator><creator>Wei, Mingdeng</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4516-7966</orcidid></search><sort><creationdate>20220101</creationdate><title>Self‐Optimizing Effect in Lithium Storage of GeO2 Induced by Heterointerface Regulation</title><author>Wu, Junxiu ; Tang, Anwen ; Wang, Kaihong ; Huang, Shuping ; Wei, Mingdeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2667-d6b6393b37be54a7ae014465c183040477c2b4703e540bf36dcf695fc33c7d813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anodes</topic><topic>Buffer layers</topic><topic>Density functional theory</topic><topic>Electrode materials</topic><topic>Energy storage</topic><topic>Germanium oxides</topic><topic>heterointerfaces</topic><topic>hexagonal@tetragonal GeO 2</topic><topic>Lithium</topic><topic>lithium storage</topic><topic>Nanotechnology</topic><topic>self‐optimizing effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Junxiu</creatorcontrib><creatorcontrib>Tang, Anwen</creatorcontrib><creatorcontrib>Wang, Kaihong</creatorcontrib><creatorcontrib>Huang, Shuping</creatorcontrib><creatorcontrib>Wei, Mingdeng</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Junxiu</au><au>Tang, Anwen</au><au>Wang, Kaihong</au><au>Huang, Shuping</au><au>Wei, Mingdeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self‐Optimizing Effect in Lithium Storage of GeO2 Induced by Heterointerface Regulation</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>18</volume><issue>4</issue><spage>e2106067</spage><epage>n/a</epage><pages>e2106067-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Herein, a heterostructural hexagonal@tetragonal GeO2 (HT‐GeO2) composite has been designed based on density functional theory (DFT) calculations and synthesized via an acidic‐heating route dealt with rapid cooling, where the inner hexagonal GeO2 (H‐GeO2) phase is covered by a porous layer of tetragonal GeO2 (T‐GeO2) owing to HF etching. Interestingly, the HT‐GeO2 electrode has a self‐optimizing effect in lithium storage induced by heterointerface regulation, where the porous T‐GeO2 layer on the surface of HT‐GeO2 can act as not only a Li+/electron conducting layer, but also a buffer layer, while the inner H‐GeO2 phase can react preferentially with Li ions owing to lower intercalation energy, which is confirmed by operando XRD measurement contributing to thorough lithiation for HT‐GeO2. Moreover, the heterointerface can enhance the pseudocapacitance effect, which can boost the Li storage and accelerate the discharge‐charge process. As a result, a large capacity of 984 mAh g−1 after 500 cycles at 2 A g−1 and a capacity of 430 mAh g−1 at a high current density of 20 A g−1 are delivered. This work provides an easy and efficient way to improve the cycling stability of the GeO2 anode, and the T‐GeO2 phase would be a novel anode material in energy storage devices.
A heterostruturally hexagonal@tetragonal GeO2 (HT‐GeO2) is obatined via an acidic‐heating route dealt with rapid cooling, and displays a self‐optimizing effect in lithium‐ion storage induced by heterointerface regulation, in which the kinetics is accelerated and electrochemical properties are enhanced significantly.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202106067</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4516-7966</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2022-01, Vol.18 (4), p.e2106067-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2608542128 |
source | Wiley-Blackwell Journals |
subjects | Anodes Buffer layers Density functional theory Electrode materials Energy storage Germanium oxides heterointerfaces hexagonal@tetragonal GeO 2 Lithium lithium storage Nanotechnology self‐optimizing effect |
title | Self‐Optimizing Effect in Lithium Storage of GeO2 Induced by Heterointerface Regulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A45%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self%E2%80%90Optimizing%20Effect%20in%20Lithium%20Storage%20of%20GeO2%20Induced%20by%20Heterointerface%20Regulation&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Wu,%20Junxiu&rft.date=2022-01-01&rft.volume=18&rft.issue=4&rft.spage=e2106067&rft.epage=n/a&rft.pages=e2106067-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202106067&rft_dat=%3Cproquest_wiley%3E2608542128%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622896655&rft_id=info:pmid/&rfr_iscdi=true |