Magnetic Resonance Imaging in Animal Models of Alzheimer's Disease Amyloidosis

Amyloid-beta (A beta) plays an important role in the pathogenesis of Alzheimer's disease. Aberrant A beta accumulation induces neuroinflammation, cerebrovascular alterations, and synaptic deficits, leading to cognitive impairment. Animal models recapitulating the A beta pathology, such as trans...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2021-11, Vol.22 (23), p.12768, Article 12768
1. Verfasser: Ni, Ruiqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page 12768
container_title International journal of molecular sciences
container_volume 22
creator Ni, Ruiqing
description Amyloid-beta (A beta) plays an important role in the pathogenesis of Alzheimer's disease. Aberrant A beta accumulation induces neuroinflammation, cerebrovascular alterations, and synaptic deficits, leading to cognitive impairment. Animal models recapitulating the A beta pathology, such as transgenic, knock-in mouse and rat models, have facilitated the understanding of disease mechanisms and the development of therapeutics targeting A beta. There is a rapid advance in high-field MRI in small animals. Versatile high-field magnetic resonance imaging (MRI) sequences, such as diffusion tensor imaging, arterial spin labeling, resting-state functional MRI, anatomical MRI, and MR spectroscopy, as well as contrast agents, have been developed for preclinical imaging in animal models. These tools have enabled high-resolution in vivo structural, functional, and molecular readouts with a whole-brain field of view. MRI has been used to visualize non-invasively the A beta deposits, synaptic deficits, regional brain atrophy, impairment in white matter integrity, functional connectivity, and cerebrovascular and glymphatic system in animal models of Alzheimer's disease amyloidosis. Many of the readouts are translational toward clinical MRI applications in patients with Alzheimer's disease. In this review, we summarize the recent advances in MRI for visualizing the pathophysiology in amyloidosis animal models. We discuss the outstanding challenges in brain imaging using MRI in small animals and propose future outlook in visualizing A beta-related alterations in the brains of animal models.
doi_str_mv 10.3390/ijms222312768
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2608536938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3a5a5bc763334d07ab6b25a35b0ab9f1</doaj_id><sourcerecordid>2608536938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-a0b76a2443b09c2573770bcecabc7c3114eed3c89ced8df994cdd87f6fa34c793</originalsourceid><addsrcrecordid>eNqNkctv1DAQhyMEoqVw5IoicaASCvgVPy5Iqy2PlVqQEJytiTNJvUrsNk5A5a_HdMuqy4mTR_Y3n2b8K4rnlLzh3JC3fjsmxhinTEn9oDimgrGKEKke3quPiicpbQlhnNXmcXHEhdaiVvy4-HwBfcDZu_IrphggOCw3I_Q-9KUP5Sr4EYbyIrY4pDJ25Wr4dYl-xOlVKs98QkhYrsabIfo2Jp-eFo86GBI-uztPiu8f3n9bf6rOv3zcrFfnlROazhWQRklgQvCGGMfyJEqRxqGDxinHKRWILXfaOGx12xkjXNtq1ckOuHDK8JNis_O2Ebb2aspTTjc2gre3F3HqLUx5qwEthxrqrJWcc9ESBY1sWA28bgg0pqPZ9W7nulqaEVuHYZ5gOJAevgR_afv4w2pZK6NVFpzeCaZ4vWCa7eiTw2GAgHFJlkmiay4N1xl9-Q-6jcsU8lfdUpRpKWSmqh3lppjShN1-GErsn9TtQeqZf3F_gz39N-YM6B3wE5vYJecx57zHCCFK1IwakytC136G2cewjkuYc-vr_2_lvwFCOcmW</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608128646</pqid></control><display><type>article</type><title>Magnetic Resonance Imaging in Animal Models of Alzheimer's Disease Amyloidosis</title><source>MEDLINE</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ni, Ruiqing</creator><creatorcontrib>Ni, Ruiqing</creatorcontrib><description>Amyloid-beta (A beta) plays an important role in the pathogenesis of Alzheimer's disease. Aberrant A beta accumulation induces neuroinflammation, cerebrovascular alterations, and synaptic deficits, leading to cognitive impairment. Animal models recapitulating the A beta pathology, such as transgenic, knock-in mouse and rat models, have facilitated the understanding of disease mechanisms and the development of therapeutics targeting A beta. There is a rapid advance in high-field MRI in small animals. Versatile high-field magnetic resonance imaging (MRI) sequences, such as diffusion tensor imaging, arterial spin labeling, resting-state functional MRI, anatomical MRI, and MR spectroscopy, as well as contrast agents, have been developed for preclinical imaging in animal models. These tools have enabled high-resolution in vivo structural, functional, and molecular readouts with a whole-brain field of view. MRI has been used to visualize non-invasively the A beta deposits, synaptic deficits, regional brain atrophy, impairment in white matter integrity, functional connectivity, and cerebrovascular and glymphatic system in animal models of Alzheimer's disease amyloidosis. Many of the readouts are translational toward clinical MRI applications in patients with Alzheimer's disease. In this review, we summarize the recent advances in MRI for visualizing the pathophysiology in amyloidosis animal models. We discuss the outstanding challenges in brain imaging using MRI in small animals and propose future outlook in visualizing A beta-related alterations in the brains of animal models.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms222312768</identifier><identifier>PMID: 34884573</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Alzheimer Disease - complications ; Alzheimer Disease - pathology ; Alzheimer's disease ; amyloid-β ; Amyloidosis ; Amyloidosis - complications ; Amyloidosis - pathology ; animal model ; Animal models ; Animals ; Atrophy ; Biochemistry &amp; Molecular Biology ; Brain ; Cerebrovascular system ; Chemistry ; Chemistry, Multidisciplinary ; Contrast agents ; Contrast media ; diffusion tensor imaging ; Disease Models, Animal ; Drug development ; functional imaging ; Functional magnetic resonance imaging ; Humans ; Impairment ; Inflammation ; Life Sciences &amp; Biomedicine ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Magnetic resonance spectroscopy ; Medical imaging ; Neural networks ; Neuroimaging ; Pathogenesis ; Pathology ; Pathophysiology ; Physical Sciences ; Review ; Rodents ; Science &amp; Technology ; Structure-function relationships ; Substantia alba</subject><ispartof>International journal of molecular sciences, 2021-11, Vol.22 (23), p.12768, Article 12768</ispartof><rights>2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the author. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>20</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000745219900001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c481t-a0b76a2443b09c2573770bcecabc7c3114eed3c89ced8df994cdd87f6fa34c793</citedby><cites>FETCH-LOGICAL-c481t-a0b76a2443b09c2573770bcecabc7c3114eed3c89ced8df994cdd87f6fa34c793</cites><orcidid>0000-0002-0793-2113</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8657987/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8657987/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34884573$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ni, Ruiqing</creatorcontrib><title>Magnetic Resonance Imaging in Animal Models of Alzheimer's Disease Amyloidosis</title><title>International journal of molecular sciences</title><addtitle>INT J MOL SCI</addtitle><addtitle>Int J Mol Sci</addtitle><description>Amyloid-beta (A beta) plays an important role in the pathogenesis of Alzheimer's disease. Aberrant A beta accumulation induces neuroinflammation, cerebrovascular alterations, and synaptic deficits, leading to cognitive impairment. Animal models recapitulating the A beta pathology, such as transgenic, knock-in mouse and rat models, have facilitated the understanding of disease mechanisms and the development of therapeutics targeting A beta. There is a rapid advance in high-field MRI in small animals. Versatile high-field magnetic resonance imaging (MRI) sequences, such as diffusion tensor imaging, arterial spin labeling, resting-state functional MRI, anatomical MRI, and MR spectroscopy, as well as contrast agents, have been developed for preclinical imaging in animal models. These tools have enabled high-resolution in vivo structural, functional, and molecular readouts with a whole-brain field of view. MRI has been used to visualize non-invasively the A beta deposits, synaptic deficits, regional brain atrophy, impairment in white matter integrity, functional connectivity, and cerebrovascular and glymphatic system in animal models of Alzheimer's disease amyloidosis. Many of the readouts are translational toward clinical MRI applications in patients with Alzheimer's disease. In this review, we summarize the recent advances in MRI for visualizing the pathophysiology in amyloidosis animal models. We discuss the outstanding challenges in brain imaging using MRI in small animals and propose future outlook in visualizing A beta-related alterations in the brains of animal models.</description><subject>Alzheimer Disease - complications</subject><subject>Alzheimer Disease - pathology</subject><subject>Alzheimer's disease</subject><subject>amyloid-β</subject><subject>Amyloidosis</subject><subject>Amyloidosis - complications</subject><subject>Amyloidosis - pathology</subject><subject>animal model</subject><subject>Animal models</subject><subject>Animals</subject><subject>Atrophy</subject><subject>Biochemistry &amp; Molecular Biology</subject><subject>Brain</subject><subject>Cerebrovascular system</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Contrast agents</subject><subject>Contrast media</subject><subject>diffusion tensor imaging</subject><subject>Disease Models, Animal</subject><subject>Drug development</subject><subject>functional imaging</subject><subject>Functional magnetic resonance imaging</subject><subject>Humans</subject><subject>Impairment</subject><subject>Inflammation</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic resonance spectroscopy</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Pathogenesis</subject><subject>Pathology</subject><subject>Pathophysiology</subject><subject>Physical Sciences</subject><subject>Review</subject><subject>Rodents</subject><subject>Science &amp; Technology</subject><subject>Structure-function relationships</subject><subject>Substantia alba</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNqNkctv1DAQhyMEoqVw5IoicaASCvgVPy5Iqy2PlVqQEJytiTNJvUrsNk5A5a_HdMuqy4mTR_Y3n2b8K4rnlLzh3JC3fjsmxhinTEn9oDimgrGKEKke3quPiicpbQlhnNXmcXHEhdaiVvy4-HwBfcDZu_IrphggOCw3I_Q-9KUP5Sr4EYbyIrY4pDJ25Wr4dYl-xOlVKs98QkhYrsabIfo2Jp-eFo86GBI-uztPiu8f3n9bf6rOv3zcrFfnlROazhWQRklgQvCGGMfyJEqRxqGDxinHKRWILXfaOGx12xkjXNtq1ckOuHDK8JNis_O2Ebb2aspTTjc2gre3F3HqLUx5qwEthxrqrJWcc9ESBY1sWA28bgg0pqPZ9W7nulqaEVuHYZ5gOJAevgR_afv4w2pZK6NVFpzeCaZ4vWCa7eiTw2GAgHFJlkmiay4N1xl9-Q-6jcsU8lfdUpRpKWSmqh3lppjShN1-GErsn9TtQeqZf3F_gz39N-YM6B3wE5vYJecx57zHCCFK1IwakytC136G2cewjkuYc-vr_2_lvwFCOcmW</recordid><startdate>20211125</startdate><enddate>20211125</enddate><creator>Ni, Ruiqing</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0793-2113</orcidid></search><sort><creationdate>20211125</creationdate><title>Magnetic Resonance Imaging in Animal Models of Alzheimer's Disease Amyloidosis</title><author>Ni, Ruiqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-a0b76a2443b09c2573770bcecabc7c3114eed3c89ced8df994cdd87f6fa34c793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alzheimer Disease - complications</topic><topic>Alzheimer Disease - pathology</topic><topic>Alzheimer's disease</topic><topic>amyloid-β</topic><topic>Amyloidosis</topic><topic>Amyloidosis - complications</topic><topic>Amyloidosis - pathology</topic><topic>animal model</topic><topic>Animal models</topic><topic>Animals</topic><topic>Atrophy</topic><topic>Biochemistry &amp; Molecular Biology</topic><topic>Brain</topic><topic>Cerebrovascular system</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Contrast agents</topic><topic>Contrast media</topic><topic>diffusion tensor imaging</topic><topic>Disease Models, Animal</topic><topic>Drug development</topic><topic>functional imaging</topic><topic>Functional magnetic resonance imaging</topic><topic>Humans</topic><topic>Impairment</topic><topic>Inflammation</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic resonance spectroscopy</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Pathogenesis</topic><topic>Pathology</topic><topic>Pathophysiology</topic><topic>Physical Sciences</topic><topic>Review</topic><topic>Rodents</topic><topic>Science &amp; Technology</topic><topic>Structure-function relationships</topic><topic>Substantia alba</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ni, Ruiqing</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ni, Ruiqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Resonance Imaging in Animal Models of Alzheimer's Disease Amyloidosis</atitle><jtitle>International journal of molecular sciences</jtitle><stitle>INT J MOL SCI</stitle><addtitle>Int J Mol Sci</addtitle><date>2021-11-25</date><risdate>2021</risdate><volume>22</volume><issue>23</issue><spage>12768</spage><pages>12768-</pages><artnum>12768</artnum><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Amyloid-beta (A beta) plays an important role in the pathogenesis of Alzheimer's disease. Aberrant A beta accumulation induces neuroinflammation, cerebrovascular alterations, and synaptic deficits, leading to cognitive impairment. Animal models recapitulating the A beta pathology, such as transgenic, knock-in mouse and rat models, have facilitated the understanding of disease mechanisms and the development of therapeutics targeting A beta. There is a rapid advance in high-field MRI in small animals. Versatile high-field magnetic resonance imaging (MRI) sequences, such as diffusion tensor imaging, arterial spin labeling, resting-state functional MRI, anatomical MRI, and MR spectroscopy, as well as contrast agents, have been developed for preclinical imaging in animal models. These tools have enabled high-resolution in vivo structural, functional, and molecular readouts with a whole-brain field of view. MRI has been used to visualize non-invasively the A beta deposits, synaptic deficits, regional brain atrophy, impairment in white matter integrity, functional connectivity, and cerebrovascular and glymphatic system in animal models of Alzheimer's disease amyloidosis. Many of the readouts are translational toward clinical MRI applications in patients with Alzheimer's disease. In this review, we summarize the recent advances in MRI for visualizing the pathophysiology in amyloidosis animal models. We discuss the outstanding challenges in brain imaging using MRI in small animals and propose future outlook in visualizing A beta-related alterations in the brains of animal models.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>34884573</pmid><doi>10.3390/ijms222312768</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-0793-2113</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2021-11, Vol.22 (23), p.12768, Article 12768
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_proquest_miscellaneous_2608536938
source MEDLINE; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Alzheimer Disease - complications
Alzheimer Disease - pathology
Alzheimer's disease
amyloid-β
Amyloidosis
Amyloidosis - complications
Amyloidosis - pathology
animal model
Animal models
Animals
Atrophy
Biochemistry & Molecular Biology
Brain
Cerebrovascular system
Chemistry
Chemistry, Multidisciplinary
Contrast agents
Contrast media
diffusion tensor imaging
Disease Models, Animal
Drug development
functional imaging
Functional magnetic resonance imaging
Humans
Impairment
Inflammation
Life Sciences & Biomedicine
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Magnetic resonance spectroscopy
Medical imaging
Neural networks
Neuroimaging
Pathogenesis
Pathology
Pathophysiology
Physical Sciences
Review
Rodents
Science & Technology
Structure-function relationships
Substantia alba
title Magnetic Resonance Imaging in Animal Models of Alzheimer's Disease Amyloidosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T08%3A09%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Resonance%20Imaging%20in%20Animal%20Models%20of%20Alzheimer's%20Disease%20Amyloidosis&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Ni,%20Ruiqing&rft.date=2021-11-25&rft.volume=22&rft.issue=23&rft.spage=12768&rft.pages=12768-&rft.artnum=12768&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms222312768&rft_dat=%3Cproquest_pubme%3E2608536938%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608128646&rft_id=info:pmid/34884573&rft_doaj_id=oai_doaj_org_article_3a5a5bc763334d07ab6b25a35b0ab9f1&rfr_iscdi=true