Magnetic Resonance Imaging in Animal Models of Alzheimer's Disease Amyloidosis
Amyloid-beta (A beta) plays an important role in the pathogenesis of Alzheimer's disease. Aberrant A beta accumulation induces neuroinflammation, cerebrovascular alterations, and synaptic deficits, leading to cognitive impairment. Animal models recapitulating the A beta pathology, such as trans...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2021-11, Vol.22 (23), p.12768, Article 12768 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | 12768 |
container_title | International journal of molecular sciences |
container_volume | 22 |
creator | Ni, Ruiqing |
description | Amyloid-beta (A beta) plays an important role in the pathogenesis of Alzheimer's disease. Aberrant A beta accumulation induces neuroinflammation, cerebrovascular alterations, and synaptic deficits, leading to cognitive impairment. Animal models recapitulating the A beta pathology, such as transgenic, knock-in mouse and rat models, have facilitated the understanding of disease mechanisms and the development of therapeutics targeting A beta. There is a rapid advance in high-field MRI in small animals. Versatile high-field magnetic resonance imaging (MRI) sequences, such as diffusion tensor imaging, arterial spin labeling, resting-state functional MRI, anatomical MRI, and MR spectroscopy, as well as contrast agents, have been developed for preclinical imaging in animal models. These tools have enabled high-resolution in vivo structural, functional, and molecular readouts with a whole-brain field of view. MRI has been used to visualize non-invasively the A beta deposits, synaptic deficits, regional brain atrophy, impairment in white matter integrity, functional connectivity, and cerebrovascular and glymphatic system in animal models of Alzheimer's disease amyloidosis. Many of the readouts are translational toward clinical MRI applications in patients with Alzheimer's disease. In this review, we summarize the recent advances in MRI for visualizing the pathophysiology in amyloidosis animal models. We discuss the outstanding challenges in brain imaging using MRI in small animals and propose future outlook in visualizing A beta-related alterations in the brains of animal models. |
doi_str_mv | 10.3390/ijms222312768 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2608536938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3a5a5bc763334d07ab6b25a35b0ab9f1</doaj_id><sourcerecordid>2608536938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-a0b76a2443b09c2573770bcecabc7c3114eed3c89ced8df994cdd87f6fa34c793</originalsourceid><addsrcrecordid>eNqNkctv1DAQhyMEoqVw5IoicaASCvgVPy5Iqy2PlVqQEJytiTNJvUrsNk5A5a_HdMuqy4mTR_Y3n2b8K4rnlLzh3JC3fjsmxhinTEn9oDimgrGKEKke3quPiicpbQlhnNXmcXHEhdaiVvy4-HwBfcDZu_IrphggOCw3I_Q-9KUP5Sr4EYbyIrY4pDJ25Wr4dYl-xOlVKs98QkhYrsabIfo2Jp-eFo86GBI-uztPiu8f3n9bf6rOv3zcrFfnlROazhWQRklgQvCGGMfyJEqRxqGDxinHKRWILXfaOGx12xkjXNtq1ckOuHDK8JNis_O2Ebb2aspTTjc2gre3F3HqLUx5qwEthxrqrJWcc9ESBY1sWA28bgg0pqPZ9W7nulqaEVuHYZ5gOJAevgR_afv4w2pZK6NVFpzeCaZ4vWCa7eiTw2GAgHFJlkmiay4N1xl9-Q-6jcsU8lfdUpRpKWSmqh3lppjShN1-GErsn9TtQeqZf3F_gz39N-YM6B3wE5vYJecx57zHCCFK1IwakytC136G2cewjkuYc-vr_2_lvwFCOcmW</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608128646</pqid></control><display><type>article</type><title>Magnetic Resonance Imaging in Animal Models of Alzheimer's Disease Amyloidosis</title><source>MEDLINE</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ni, Ruiqing</creator><creatorcontrib>Ni, Ruiqing</creatorcontrib><description>Amyloid-beta (A beta) plays an important role in the pathogenesis of Alzheimer's disease. Aberrant A beta accumulation induces neuroinflammation, cerebrovascular alterations, and synaptic deficits, leading to cognitive impairment. Animal models recapitulating the A beta pathology, such as transgenic, knock-in mouse and rat models, have facilitated the understanding of disease mechanisms and the development of therapeutics targeting A beta. There is a rapid advance in high-field MRI in small animals. Versatile high-field magnetic resonance imaging (MRI) sequences, such as diffusion tensor imaging, arterial spin labeling, resting-state functional MRI, anatomical MRI, and MR spectroscopy, as well as contrast agents, have been developed for preclinical imaging in animal models. These tools have enabled high-resolution in vivo structural, functional, and molecular readouts with a whole-brain field of view. MRI has been used to visualize non-invasively the A beta deposits, synaptic deficits, regional brain atrophy, impairment in white matter integrity, functional connectivity, and cerebrovascular and glymphatic system in animal models of Alzheimer's disease amyloidosis. Many of the readouts are translational toward clinical MRI applications in patients with Alzheimer's disease. In this review, we summarize the recent advances in MRI for visualizing the pathophysiology in amyloidosis animal models. We discuss the outstanding challenges in brain imaging using MRI in small animals and propose future outlook in visualizing A beta-related alterations in the brains of animal models.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms222312768</identifier><identifier>PMID: 34884573</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Alzheimer Disease - complications ; Alzheimer Disease - pathology ; Alzheimer's disease ; amyloid-β ; Amyloidosis ; Amyloidosis - complications ; Amyloidosis - pathology ; animal model ; Animal models ; Animals ; Atrophy ; Biochemistry & Molecular Biology ; Brain ; Cerebrovascular system ; Chemistry ; Chemistry, Multidisciplinary ; Contrast agents ; Contrast media ; diffusion tensor imaging ; Disease Models, Animal ; Drug development ; functional imaging ; Functional magnetic resonance imaging ; Humans ; Impairment ; Inflammation ; Life Sciences & Biomedicine ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Magnetic resonance spectroscopy ; Medical imaging ; Neural networks ; Neuroimaging ; Pathogenesis ; Pathology ; Pathophysiology ; Physical Sciences ; Review ; Rodents ; Science & Technology ; Structure-function relationships ; Substantia alba</subject><ispartof>International journal of molecular sciences, 2021-11, Vol.22 (23), p.12768, Article 12768</ispartof><rights>2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the author. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>20</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000745219900001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c481t-a0b76a2443b09c2573770bcecabc7c3114eed3c89ced8df994cdd87f6fa34c793</citedby><cites>FETCH-LOGICAL-c481t-a0b76a2443b09c2573770bcecabc7c3114eed3c89ced8df994cdd87f6fa34c793</cites><orcidid>0000-0002-0793-2113</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8657987/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8657987/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34884573$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ni, Ruiqing</creatorcontrib><title>Magnetic Resonance Imaging in Animal Models of Alzheimer's Disease Amyloidosis</title><title>International journal of molecular sciences</title><addtitle>INT J MOL SCI</addtitle><addtitle>Int J Mol Sci</addtitle><description>Amyloid-beta (A beta) plays an important role in the pathogenesis of Alzheimer's disease. Aberrant A beta accumulation induces neuroinflammation, cerebrovascular alterations, and synaptic deficits, leading to cognitive impairment. Animal models recapitulating the A beta pathology, such as transgenic, knock-in mouse and rat models, have facilitated the understanding of disease mechanisms and the development of therapeutics targeting A beta. There is a rapid advance in high-field MRI in small animals. Versatile high-field magnetic resonance imaging (MRI) sequences, such as diffusion tensor imaging, arterial spin labeling, resting-state functional MRI, anatomical MRI, and MR spectroscopy, as well as contrast agents, have been developed for preclinical imaging in animal models. These tools have enabled high-resolution in vivo structural, functional, and molecular readouts with a whole-brain field of view. MRI has been used to visualize non-invasively the A beta deposits, synaptic deficits, regional brain atrophy, impairment in white matter integrity, functional connectivity, and cerebrovascular and glymphatic system in animal models of Alzheimer's disease amyloidosis. Many of the readouts are translational toward clinical MRI applications in patients with Alzheimer's disease. In this review, we summarize the recent advances in MRI for visualizing the pathophysiology in amyloidosis animal models. We discuss the outstanding challenges in brain imaging using MRI in small animals and propose future outlook in visualizing A beta-related alterations in the brains of animal models.</description><subject>Alzheimer Disease - complications</subject><subject>Alzheimer Disease - pathology</subject><subject>Alzheimer's disease</subject><subject>amyloid-β</subject><subject>Amyloidosis</subject><subject>Amyloidosis - complications</subject><subject>Amyloidosis - pathology</subject><subject>animal model</subject><subject>Animal models</subject><subject>Animals</subject><subject>Atrophy</subject><subject>Biochemistry & Molecular Biology</subject><subject>Brain</subject><subject>Cerebrovascular system</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Contrast agents</subject><subject>Contrast media</subject><subject>diffusion tensor imaging</subject><subject>Disease Models, Animal</subject><subject>Drug development</subject><subject>functional imaging</subject><subject>Functional magnetic resonance imaging</subject><subject>Humans</subject><subject>Impairment</subject><subject>Inflammation</subject><subject>Life Sciences & Biomedicine</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic resonance spectroscopy</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Pathogenesis</subject><subject>Pathology</subject><subject>Pathophysiology</subject><subject>Physical Sciences</subject><subject>Review</subject><subject>Rodents</subject><subject>Science & Technology</subject><subject>Structure-function relationships</subject><subject>Substantia alba</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNqNkctv1DAQhyMEoqVw5IoicaASCvgVPy5Iqy2PlVqQEJytiTNJvUrsNk5A5a_HdMuqy4mTR_Y3n2b8K4rnlLzh3JC3fjsmxhinTEn9oDimgrGKEKke3quPiicpbQlhnNXmcXHEhdaiVvy4-HwBfcDZu_IrphggOCw3I_Q-9KUP5Sr4EYbyIrY4pDJ25Wr4dYl-xOlVKs98QkhYrsabIfo2Jp-eFo86GBI-uztPiu8f3n9bf6rOv3zcrFfnlROazhWQRklgQvCGGMfyJEqRxqGDxinHKRWILXfaOGx12xkjXNtq1ckOuHDK8JNis_O2Ebb2aspTTjc2gre3F3HqLUx5qwEthxrqrJWcc9ESBY1sWA28bgg0pqPZ9W7nulqaEVuHYZ5gOJAevgR_afv4w2pZK6NVFpzeCaZ4vWCa7eiTw2GAgHFJlkmiay4N1xl9-Q-6jcsU8lfdUpRpKWSmqh3lppjShN1-GErsn9TtQeqZf3F_gz39N-YM6B3wE5vYJecx57zHCCFK1IwakytC136G2cewjkuYc-vr_2_lvwFCOcmW</recordid><startdate>20211125</startdate><enddate>20211125</enddate><creator>Ni, Ruiqing</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0793-2113</orcidid></search><sort><creationdate>20211125</creationdate><title>Magnetic Resonance Imaging in Animal Models of Alzheimer's Disease Amyloidosis</title><author>Ni, Ruiqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-a0b76a2443b09c2573770bcecabc7c3114eed3c89ced8df994cdd87f6fa34c793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alzheimer Disease - complications</topic><topic>Alzheimer Disease - pathology</topic><topic>Alzheimer's disease</topic><topic>amyloid-β</topic><topic>Amyloidosis</topic><topic>Amyloidosis - complications</topic><topic>Amyloidosis - pathology</topic><topic>animal model</topic><topic>Animal models</topic><topic>Animals</topic><topic>Atrophy</topic><topic>Biochemistry & Molecular Biology</topic><topic>Brain</topic><topic>Cerebrovascular system</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Contrast agents</topic><topic>Contrast media</topic><topic>diffusion tensor imaging</topic><topic>Disease Models, Animal</topic><topic>Drug development</topic><topic>functional imaging</topic><topic>Functional magnetic resonance imaging</topic><topic>Humans</topic><topic>Impairment</topic><topic>Inflammation</topic><topic>Life Sciences & Biomedicine</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic resonance spectroscopy</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Pathogenesis</topic><topic>Pathology</topic><topic>Pathophysiology</topic><topic>Physical Sciences</topic><topic>Review</topic><topic>Rodents</topic><topic>Science & Technology</topic><topic>Structure-function relationships</topic><topic>Substantia alba</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ni, Ruiqing</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ni, Ruiqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Resonance Imaging in Animal Models of Alzheimer's Disease Amyloidosis</atitle><jtitle>International journal of molecular sciences</jtitle><stitle>INT J MOL SCI</stitle><addtitle>Int J Mol Sci</addtitle><date>2021-11-25</date><risdate>2021</risdate><volume>22</volume><issue>23</issue><spage>12768</spage><pages>12768-</pages><artnum>12768</artnum><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Amyloid-beta (A beta) plays an important role in the pathogenesis of Alzheimer's disease. Aberrant A beta accumulation induces neuroinflammation, cerebrovascular alterations, and synaptic deficits, leading to cognitive impairment. Animal models recapitulating the A beta pathology, such as transgenic, knock-in mouse and rat models, have facilitated the understanding of disease mechanisms and the development of therapeutics targeting A beta. There is a rapid advance in high-field MRI in small animals. Versatile high-field magnetic resonance imaging (MRI) sequences, such as diffusion tensor imaging, arterial spin labeling, resting-state functional MRI, anatomical MRI, and MR spectroscopy, as well as contrast agents, have been developed for preclinical imaging in animal models. These tools have enabled high-resolution in vivo structural, functional, and molecular readouts with a whole-brain field of view. MRI has been used to visualize non-invasively the A beta deposits, synaptic deficits, regional brain atrophy, impairment in white matter integrity, functional connectivity, and cerebrovascular and glymphatic system in animal models of Alzheimer's disease amyloidosis. Many of the readouts are translational toward clinical MRI applications in patients with Alzheimer's disease. In this review, we summarize the recent advances in MRI for visualizing the pathophysiology in amyloidosis animal models. We discuss the outstanding challenges in brain imaging using MRI in small animals and propose future outlook in visualizing A beta-related alterations in the brains of animal models.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>34884573</pmid><doi>10.3390/ijms222312768</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-0793-2113</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2021-11, Vol.22 (23), p.12768, Article 12768 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_proquest_miscellaneous_2608536938 |
source | MEDLINE; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Alzheimer Disease - complications Alzheimer Disease - pathology Alzheimer's disease amyloid-β Amyloidosis Amyloidosis - complications Amyloidosis - pathology animal model Animal models Animals Atrophy Biochemistry & Molecular Biology Brain Cerebrovascular system Chemistry Chemistry, Multidisciplinary Contrast agents Contrast media diffusion tensor imaging Disease Models, Animal Drug development functional imaging Functional magnetic resonance imaging Humans Impairment Inflammation Life Sciences & Biomedicine Magnetic resonance imaging Magnetic Resonance Imaging - methods Magnetic resonance spectroscopy Medical imaging Neural networks Neuroimaging Pathogenesis Pathology Pathophysiology Physical Sciences Review Rodents Science & Technology Structure-function relationships Substantia alba |
title | Magnetic Resonance Imaging in Animal Models of Alzheimer's Disease Amyloidosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T08%3A09%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Resonance%20Imaging%20in%20Animal%20Models%20of%20Alzheimer's%20Disease%20Amyloidosis&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Ni,%20Ruiqing&rft.date=2021-11-25&rft.volume=22&rft.issue=23&rft.spage=12768&rft.pages=12768-&rft.artnum=12768&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms222312768&rft_dat=%3Cproquest_pubme%3E2608536938%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608128646&rft_id=info:pmid/34884573&rft_doaj_id=oai_doaj_org_article_3a5a5bc763334d07ab6b25a35b0ab9f1&rfr_iscdi=true |