Multiplexed CRISPR/Cas9 editing of the long‐chain acyl‐CoA synthetase family in the diatom Phaeodactylum tricornutum reveals that mitochondrial ptACSL3 is involved in the synthesis of storage lipids
Summary Long‐chain acyl‐CoA synthetases (LACS) play diverse and fundamentally important roles in lipid metabolism. While their functions have been well established in bacteria, yeast and plants, the mechanisms by which LACS isozymes regulate lipid metabolism in unicellular oil‐producing microalgae,...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2022-02, Vol.233 (4), p.1797-1812 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1812 |
---|---|
container_issue | 4 |
container_start_page | 1797 |
container_title | The New phytologist |
container_volume | 233 |
creator | Hao, Xiahui Chen, Wenchao Amato, Alberto Jouhet, Juliette Maréchal, Eric Moog, Daniel Hu, Hanhua Jin, Hu You, Lingjie Huang, Fenghong Moosburner, Mark Allen, Andrew E. Gong, Yangmin |
description | Summary
Long‐chain acyl‐CoA synthetases (LACS) play diverse and fundamentally important roles in lipid metabolism. While their functions have been well established in bacteria, yeast and plants, the mechanisms by which LACS isozymes regulate lipid metabolism in unicellular oil‐producing microalgae, including the diatom Phaeodactylum tricornutum, remain largely unknown.
In P. tricornutum, a family of five genes (ptACSL1–ptACSL5) encodes LACS activities. We generated single lacs knockout/knockdown mutants using multiplexed CRISPR/Cas9 method, and determined their substrate specificities towards different fatty acids (FAs) and subcellular localisations.
ptACSL3 is localised in the mitochondria and its disruption led to compromised growth and reduced triacylglycerol (TAG) content when cells were bubbled with air. The ptACSL3 mutants showed altered FA profiles in two galactoglycerolipids and phosphatidylcholine (PC) with significantly reduced distribution of 16:0 and 16:1. ptACSL5 is localised in the peroxisome and its knockdown resulted in reduced growth rate and altered molecular species of PC and TAG, indicating a role in controlling the composition of acyl‐CoAs for lipid synthesis.
Our work demonstrates the potential of generating gene knockout mutants with the mutation of large fragment deletion using multiplexed CRISPR/Cas9 and provides insight into the functions of LACS isozymes in lipid metabolism in the oleaginous microalgae. |
doi_str_mv | 10.1111/nph.17911 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2608535124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621149755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3881-9f1984dc4f3e72e374645871bc5a686c477260167ecbc942808e15a1e2df8e513</originalsourceid><addsrcrecordid>eNp1kUFu1DAYhS0EokNhwQWQJTawSCdOnMRZjiKglQYYtSCxizzOn4krJw62M5AdR-BcHIOT8JcMLJDwxrbe9z8_-RHylMUXDNd6GLsLVpSM3SMrxvMyEiwt7pNVHCciynn-6Yw88v42juMyy5OH5CzlQiQi5ivy4-1kgh4NfIWGVtdXN7vrdSV9SaHRQQ8HalsaOqDGDoef376rTuqBSjUbvFR2Q_08oBykB9rKXpuZon430GgZbE93nQTbSBVmM_U0OK2sG6aAZwdHkMYjLAPtdbCqs0PjtDR0DJvqZptS7dHtaM0Rs51sl_c8KhjMB-vkAcPpUTf-MXnQoiE8Oe3n5OPrVx-qy2j7_s1VtdlGKhWCRWXLSsEbxdsUigTSguc8EwXbq0zmIle8KJI8ZnkBaq9Kjt8kgGWSQdK0AjKWnpMXi-_o7OcJfKh77RUYIwewk69xWmRpxhKO6PN_0Fs7uQHTIZUwxssiy5B6uVDKWe8dtPXodC_dXLO4viu4xoLr3wUj--zkOO17aP6SfxpFYL0AX7SB-f9O9bvd5WL5C6OetD0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621149755</pqid></control><display><type>article</type><title>Multiplexed CRISPR/Cas9 editing of the long‐chain acyl‐CoA synthetase family in the diatom Phaeodactylum tricornutum reveals that mitochondrial ptACSL3 is involved in the synthesis of storage lipids</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hao, Xiahui ; Chen, Wenchao ; Amato, Alberto ; Jouhet, Juliette ; Maréchal, Eric ; Moog, Daniel ; Hu, Hanhua ; Jin, Hu ; You, Lingjie ; Huang, Fenghong ; Moosburner, Mark ; Allen, Andrew E. ; Gong, Yangmin</creator><creatorcontrib>Hao, Xiahui ; Chen, Wenchao ; Amato, Alberto ; Jouhet, Juliette ; Maréchal, Eric ; Moog, Daniel ; Hu, Hanhua ; Jin, Hu ; You, Lingjie ; Huang, Fenghong ; Moosburner, Mark ; Allen, Andrew E. ; Gong, Yangmin</creatorcontrib><description>Summary
Long‐chain acyl‐CoA synthetases (LACS) play diverse and fundamentally important roles in lipid metabolism. While their functions have been well established in bacteria, yeast and plants, the mechanisms by which LACS isozymes regulate lipid metabolism in unicellular oil‐producing microalgae, including the diatom Phaeodactylum tricornutum, remain largely unknown.
In P. tricornutum, a family of five genes (ptACSL1–ptACSL5) encodes LACS activities. We generated single lacs knockout/knockdown mutants using multiplexed CRISPR/Cas9 method, and determined their substrate specificities towards different fatty acids (FAs) and subcellular localisations.
ptACSL3 is localised in the mitochondria and its disruption led to compromised growth and reduced triacylglycerol (TAG) content when cells were bubbled with air. The ptACSL3 mutants showed altered FA profiles in two galactoglycerolipids and phosphatidylcholine (PC) with significantly reduced distribution of 16:0 and 16:1. ptACSL5 is localised in the peroxisome and its knockdown resulted in reduced growth rate and altered molecular species of PC and TAG, indicating a role in controlling the composition of acyl‐CoAs for lipid synthesis.
Our work demonstrates the potential of generating gene knockout mutants with the mutation of large fragment deletion using multiplexed CRISPR/Cas9 and provides insight into the functions of LACS isozymes in lipid metabolism in the oleaginous microalgae.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.17911</identifier><identifier>PMID: 34882804</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Algae ; Aquatic microorganisms ; Coenzyme A - genetics ; Coenzyme A - metabolism ; Coenzyme A Ligases - genetics ; Coenzyme A Ligases - metabolism ; CRISPR ; CRISPR-Cas Systems - genetics ; Diatoms ; Diatoms - genetics ; Diatoms - metabolism ; fatty acid ; Fatty acids ; Fatty Acids - metabolism ; Gene deletion ; Gene editing ; Growth rate ; Isoenzymes ; Lecithin ; Lipid metabolism ; Lipids ; long‐chain acyl‐CoA synthetase ; Metabolism ; Microalgae ; Mitochondria ; Mitochondria - metabolism ; multiplexed CRISPR/Cas9 ; Multiplexing ; Mutants ; Mutation ; Phaeodactylum tricornutum ; Phosphatidylcholine ; Phytoplankton ; Storage ; Substrates ; Synthesis ; triacylglycerol ; Triglycerides ; Yeasts</subject><ispartof>The New phytologist, 2022-02, Vol.233 (4), p.1797-1812</ispartof><rights>2021 The Authors. © 2021 New Phytologist Foundation</rights><rights>2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.</rights><rights>Copyright © 2022 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3881-9f1984dc4f3e72e374645871bc5a686c477260167ecbc942808e15a1e2df8e513</citedby><cites>FETCH-LOGICAL-c3881-9f1984dc4f3e72e374645871bc5a686c477260167ecbc942808e15a1e2df8e513</cites><orcidid>0000-0002-8672-8742 ; 0000-0002-4096-3640 ; 0000-0001-5911-6081 ; 0000-0002-8485-7591 ; 0000-0002-9126-5535</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnph.17911$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnph.17911$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34882804$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hao, Xiahui</creatorcontrib><creatorcontrib>Chen, Wenchao</creatorcontrib><creatorcontrib>Amato, Alberto</creatorcontrib><creatorcontrib>Jouhet, Juliette</creatorcontrib><creatorcontrib>Maréchal, Eric</creatorcontrib><creatorcontrib>Moog, Daniel</creatorcontrib><creatorcontrib>Hu, Hanhua</creatorcontrib><creatorcontrib>Jin, Hu</creatorcontrib><creatorcontrib>You, Lingjie</creatorcontrib><creatorcontrib>Huang, Fenghong</creatorcontrib><creatorcontrib>Moosburner, Mark</creatorcontrib><creatorcontrib>Allen, Andrew E.</creatorcontrib><creatorcontrib>Gong, Yangmin</creatorcontrib><title>Multiplexed CRISPR/Cas9 editing of the long‐chain acyl‐CoA synthetase family in the diatom Phaeodactylum tricornutum reveals that mitochondrial ptACSL3 is involved in the synthesis of storage lipids</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Summary
Long‐chain acyl‐CoA synthetases (LACS) play diverse and fundamentally important roles in lipid metabolism. While their functions have been well established in bacteria, yeast and plants, the mechanisms by which LACS isozymes regulate lipid metabolism in unicellular oil‐producing microalgae, including the diatom Phaeodactylum tricornutum, remain largely unknown.
In P. tricornutum, a family of five genes (ptACSL1–ptACSL5) encodes LACS activities. We generated single lacs knockout/knockdown mutants using multiplexed CRISPR/Cas9 method, and determined their substrate specificities towards different fatty acids (FAs) and subcellular localisations.
ptACSL3 is localised in the mitochondria and its disruption led to compromised growth and reduced triacylglycerol (TAG) content when cells were bubbled with air. The ptACSL3 mutants showed altered FA profiles in two galactoglycerolipids and phosphatidylcholine (PC) with significantly reduced distribution of 16:0 and 16:1. ptACSL5 is localised in the peroxisome and its knockdown resulted in reduced growth rate and altered molecular species of PC and TAG, indicating a role in controlling the composition of acyl‐CoAs for lipid synthesis.
Our work demonstrates the potential of generating gene knockout mutants with the mutation of large fragment deletion using multiplexed CRISPR/Cas9 and provides insight into the functions of LACS isozymes in lipid metabolism in the oleaginous microalgae.</description><subject>Algae</subject><subject>Aquatic microorganisms</subject><subject>Coenzyme A - genetics</subject><subject>Coenzyme A - metabolism</subject><subject>Coenzyme A Ligases - genetics</subject><subject>Coenzyme A Ligases - metabolism</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>Diatoms</subject><subject>Diatoms - genetics</subject><subject>Diatoms - metabolism</subject><subject>fatty acid</subject><subject>Fatty acids</subject><subject>Fatty Acids - metabolism</subject><subject>Gene deletion</subject><subject>Gene editing</subject><subject>Growth rate</subject><subject>Isoenzymes</subject><subject>Lecithin</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>long‐chain acyl‐CoA synthetase</subject><subject>Metabolism</subject><subject>Microalgae</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>multiplexed CRISPR/Cas9</subject><subject>Multiplexing</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Phaeodactylum tricornutum</subject><subject>Phosphatidylcholine</subject><subject>Phytoplankton</subject><subject>Storage</subject><subject>Substrates</subject><subject>Synthesis</subject><subject>triacylglycerol</subject><subject>Triglycerides</subject><subject>Yeasts</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUFu1DAYhS0EokNhwQWQJTawSCdOnMRZjiKglQYYtSCxizzOn4krJw62M5AdR-BcHIOT8JcMLJDwxrbe9z8_-RHylMUXDNd6GLsLVpSM3SMrxvMyEiwt7pNVHCciynn-6Yw88v42juMyy5OH5CzlQiQi5ivy4-1kgh4NfIWGVtdXN7vrdSV9SaHRQQ8HalsaOqDGDoef376rTuqBSjUbvFR2Q_08oBykB9rKXpuZon430GgZbE93nQTbSBVmM_U0OK2sG6aAZwdHkMYjLAPtdbCqs0PjtDR0DJvqZptS7dHtaM0Rs51sl_c8KhjMB-vkAcPpUTf-MXnQoiE8Oe3n5OPrVx-qy2j7_s1VtdlGKhWCRWXLSsEbxdsUigTSguc8EwXbq0zmIle8KJI8ZnkBaq9Kjt8kgGWSQdK0AjKWnpMXi-_o7OcJfKh77RUYIwewk69xWmRpxhKO6PN_0Fs7uQHTIZUwxssiy5B6uVDKWe8dtPXodC_dXLO4viu4xoLr3wUj--zkOO17aP6SfxpFYL0AX7SB-f9O9bvd5WL5C6OetD0</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Hao, Xiahui</creator><creator>Chen, Wenchao</creator><creator>Amato, Alberto</creator><creator>Jouhet, Juliette</creator><creator>Maréchal, Eric</creator><creator>Moog, Daniel</creator><creator>Hu, Hanhua</creator><creator>Jin, Hu</creator><creator>You, Lingjie</creator><creator>Huang, Fenghong</creator><creator>Moosburner, Mark</creator><creator>Allen, Andrew E.</creator><creator>Gong, Yangmin</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8672-8742</orcidid><orcidid>https://orcid.org/0000-0002-4096-3640</orcidid><orcidid>https://orcid.org/0000-0001-5911-6081</orcidid><orcidid>https://orcid.org/0000-0002-8485-7591</orcidid><orcidid>https://orcid.org/0000-0002-9126-5535</orcidid></search><sort><creationdate>202202</creationdate><title>Multiplexed CRISPR/Cas9 editing of the long‐chain acyl‐CoA synthetase family in the diatom Phaeodactylum tricornutum reveals that mitochondrial ptACSL3 is involved in the synthesis of storage lipids</title><author>Hao, Xiahui ; Chen, Wenchao ; Amato, Alberto ; Jouhet, Juliette ; Maréchal, Eric ; Moog, Daniel ; Hu, Hanhua ; Jin, Hu ; You, Lingjie ; Huang, Fenghong ; Moosburner, Mark ; Allen, Andrew E. ; Gong, Yangmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3881-9f1984dc4f3e72e374645871bc5a686c477260167ecbc942808e15a1e2df8e513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algae</topic><topic>Aquatic microorganisms</topic><topic>Coenzyme A - genetics</topic><topic>Coenzyme A - metabolism</topic><topic>Coenzyme A Ligases - genetics</topic><topic>Coenzyme A Ligases - metabolism</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>Diatoms</topic><topic>Diatoms - genetics</topic><topic>Diatoms - metabolism</topic><topic>fatty acid</topic><topic>Fatty acids</topic><topic>Fatty Acids - metabolism</topic><topic>Gene deletion</topic><topic>Gene editing</topic><topic>Growth rate</topic><topic>Isoenzymes</topic><topic>Lecithin</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>long‐chain acyl‐CoA synthetase</topic><topic>Metabolism</topic><topic>Microalgae</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>multiplexed CRISPR/Cas9</topic><topic>Multiplexing</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Phaeodactylum tricornutum</topic><topic>Phosphatidylcholine</topic><topic>Phytoplankton</topic><topic>Storage</topic><topic>Substrates</topic><topic>Synthesis</topic><topic>triacylglycerol</topic><topic>Triglycerides</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Xiahui</creatorcontrib><creatorcontrib>Chen, Wenchao</creatorcontrib><creatorcontrib>Amato, Alberto</creatorcontrib><creatorcontrib>Jouhet, Juliette</creatorcontrib><creatorcontrib>Maréchal, Eric</creatorcontrib><creatorcontrib>Moog, Daniel</creatorcontrib><creatorcontrib>Hu, Hanhua</creatorcontrib><creatorcontrib>Jin, Hu</creatorcontrib><creatorcontrib>You, Lingjie</creatorcontrib><creatorcontrib>Huang, Fenghong</creatorcontrib><creatorcontrib>Moosburner, Mark</creatorcontrib><creatorcontrib>Allen, Andrew E.</creatorcontrib><creatorcontrib>Gong, Yangmin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Xiahui</au><au>Chen, Wenchao</au><au>Amato, Alberto</au><au>Jouhet, Juliette</au><au>Maréchal, Eric</au><au>Moog, Daniel</au><au>Hu, Hanhua</au><au>Jin, Hu</au><au>You, Lingjie</au><au>Huang, Fenghong</au><au>Moosburner, Mark</au><au>Allen, Andrew E.</au><au>Gong, Yangmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiplexed CRISPR/Cas9 editing of the long‐chain acyl‐CoA synthetase family in the diatom Phaeodactylum tricornutum reveals that mitochondrial ptACSL3 is involved in the synthesis of storage lipids</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2022-02</date><risdate>2022</risdate><volume>233</volume><issue>4</issue><spage>1797</spage><epage>1812</epage><pages>1797-1812</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Summary
Long‐chain acyl‐CoA synthetases (LACS) play diverse and fundamentally important roles in lipid metabolism. While their functions have been well established in bacteria, yeast and plants, the mechanisms by which LACS isozymes regulate lipid metabolism in unicellular oil‐producing microalgae, including the diatom Phaeodactylum tricornutum, remain largely unknown.
In P. tricornutum, a family of five genes (ptACSL1–ptACSL5) encodes LACS activities. We generated single lacs knockout/knockdown mutants using multiplexed CRISPR/Cas9 method, and determined their substrate specificities towards different fatty acids (FAs) and subcellular localisations.
ptACSL3 is localised in the mitochondria and its disruption led to compromised growth and reduced triacylglycerol (TAG) content when cells were bubbled with air. The ptACSL3 mutants showed altered FA profiles in two galactoglycerolipids and phosphatidylcholine (PC) with significantly reduced distribution of 16:0 and 16:1. ptACSL5 is localised in the peroxisome and its knockdown resulted in reduced growth rate and altered molecular species of PC and TAG, indicating a role in controlling the composition of acyl‐CoAs for lipid synthesis.
Our work demonstrates the potential of generating gene knockout mutants with the mutation of large fragment deletion using multiplexed CRISPR/Cas9 and provides insight into the functions of LACS isozymes in lipid metabolism in the oleaginous microalgae.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34882804</pmid><doi>10.1111/nph.17911</doi><tpages>1812</tpages><orcidid>https://orcid.org/0000-0002-8672-8742</orcidid><orcidid>https://orcid.org/0000-0002-4096-3640</orcidid><orcidid>https://orcid.org/0000-0001-5911-6081</orcidid><orcidid>https://orcid.org/0000-0002-8485-7591</orcidid><orcidid>https://orcid.org/0000-0002-9126-5535</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2022-02, Vol.233 (4), p.1797-1812 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_proquest_miscellaneous_2608535124 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algae Aquatic microorganisms Coenzyme A - genetics Coenzyme A - metabolism Coenzyme A Ligases - genetics Coenzyme A Ligases - metabolism CRISPR CRISPR-Cas Systems - genetics Diatoms Diatoms - genetics Diatoms - metabolism fatty acid Fatty acids Fatty Acids - metabolism Gene deletion Gene editing Growth rate Isoenzymes Lecithin Lipid metabolism Lipids long‐chain acyl‐CoA synthetase Metabolism Microalgae Mitochondria Mitochondria - metabolism multiplexed CRISPR/Cas9 Multiplexing Mutants Mutation Phaeodactylum tricornutum Phosphatidylcholine Phytoplankton Storage Substrates Synthesis triacylglycerol Triglycerides Yeasts |
title | Multiplexed CRISPR/Cas9 editing of the long‐chain acyl‐CoA synthetase family in the diatom Phaeodactylum tricornutum reveals that mitochondrial ptACSL3 is involved in the synthesis of storage lipids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A22%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiplexed%20CRISPR/Cas9%20editing%20of%20the%20long%E2%80%90chain%20acyl%E2%80%90CoA%20synthetase%20family%20in%20the%20diatom%20Phaeodactylum%20tricornutum%20reveals%20that%20mitochondrial%20ptACSL3%20is%20involved%20in%20the%20synthesis%20of%20storage%20lipids&rft.jtitle=The%20New%20phytologist&rft.au=Hao,%20Xiahui&rft.date=2022-02&rft.volume=233&rft.issue=4&rft.spage=1797&rft.epage=1812&rft.pages=1797-1812&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.17911&rft_dat=%3Cproquest_cross%3E2621149755%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621149755&rft_id=info:pmid/34882804&rfr_iscdi=true |