Multiplexed CRISPR/Cas9 editing of the long‐chain acyl‐CoA synthetase family in the diatom Phaeodactylum tricornutum reveals that mitochondrial ptACSL3 is involved in the synthesis of storage lipids

Summary Long‐chain acyl‐CoA synthetases (LACS) play diverse and fundamentally important roles in lipid metabolism. While their functions have been well established in bacteria, yeast and plants, the mechanisms by which LACS isozymes regulate lipid metabolism in unicellular oil‐producing microalgae,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2022-02, Vol.233 (4), p.1797-1812
Hauptverfasser: Hao, Xiahui, Chen, Wenchao, Amato, Alberto, Jouhet, Juliette, Maréchal, Eric, Moog, Daniel, Hu, Hanhua, Jin, Hu, You, Lingjie, Huang, Fenghong, Moosburner, Mark, Allen, Andrew E., Gong, Yangmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1812
container_issue 4
container_start_page 1797
container_title The New phytologist
container_volume 233
creator Hao, Xiahui
Chen, Wenchao
Amato, Alberto
Jouhet, Juliette
Maréchal, Eric
Moog, Daniel
Hu, Hanhua
Jin, Hu
You, Lingjie
Huang, Fenghong
Moosburner, Mark
Allen, Andrew E.
Gong, Yangmin
description Summary Long‐chain acyl‐CoA synthetases (LACS) play diverse and fundamentally important roles in lipid metabolism. While their functions have been well established in bacteria, yeast and plants, the mechanisms by which LACS isozymes regulate lipid metabolism in unicellular oil‐producing microalgae, including the diatom Phaeodactylum tricornutum, remain largely unknown. In P. tricornutum, a family of five genes (ptACSL1–ptACSL5) encodes LACS activities. We generated single lacs knockout/knockdown mutants using multiplexed CRISPR/Cas9 method, and determined their substrate specificities towards different fatty acids (FAs) and subcellular localisations. ptACSL3 is localised in the mitochondria and its disruption led to compromised growth and reduced triacylglycerol (TAG) content when cells were bubbled with air. The ptACSL3 mutants showed altered FA profiles in two galactoglycerolipids and phosphatidylcholine (PC) with significantly reduced distribution of 16:0 and 16:1. ptACSL5 is localised in the peroxisome and its knockdown resulted in reduced growth rate and altered molecular species of PC and TAG, indicating a role in controlling the composition of acyl‐CoAs for lipid synthesis. Our work demonstrates the potential of generating gene knockout mutants with the mutation of large fragment deletion using multiplexed CRISPR/Cas9 and provides insight into the functions of LACS isozymes in lipid metabolism in the oleaginous microalgae.
doi_str_mv 10.1111/nph.17911
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2608535124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621149755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3881-9f1984dc4f3e72e374645871bc5a686c477260167ecbc942808e15a1e2df8e513</originalsourceid><addsrcrecordid>eNp1kUFu1DAYhS0EokNhwQWQJTawSCdOnMRZjiKglQYYtSCxizzOn4krJw62M5AdR-BcHIOT8JcMLJDwxrbe9z8_-RHylMUXDNd6GLsLVpSM3SMrxvMyEiwt7pNVHCciynn-6Yw88v42juMyy5OH5CzlQiQi5ivy4-1kgh4NfIWGVtdXN7vrdSV9SaHRQQ8HalsaOqDGDoef376rTuqBSjUbvFR2Q_08oBykB9rKXpuZon430GgZbE93nQTbSBVmM_U0OK2sG6aAZwdHkMYjLAPtdbCqs0PjtDR0DJvqZptS7dHtaM0Rs51sl_c8KhjMB-vkAcPpUTf-MXnQoiE8Oe3n5OPrVx-qy2j7_s1VtdlGKhWCRWXLSsEbxdsUigTSguc8EwXbq0zmIle8KJI8ZnkBaq9Kjt8kgGWSQdK0AjKWnpMXi-_o7OcJfKh77RUYIwewk69xWmRpxhKO6PN_0Fs7uQHTIZUwxssiy5B6uVDKWe8dtPXodC_dXLO4viu4xoLr3wUj--zkOO17aP6SfxpFYL0AX7SB-f9O9bvd5WL5C6OetD0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621149755</pqid></control><display><type>article</type><title>Multiplexed CRISPR/Cas9 editing of the long‐chain acyl‐CoA synthetase family in the diatom Phaeodactylum tricornutum reveals that mitochondrial ptACSL3 is involved in the synthesis of storage lipids</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hao, Xiahui ; Chen, Wenchao ; Amato, Alberto ; Jouhet, Juliette ; Maréchal, Eric ; Moog, Daniel ; Hu, Hanhua ; Jin, Hu ; You, Lingjie ; Huang, Fenghong ; Moosburner, Mark ; Allen, Andrew E. ; Gong, Yangmin</creator><creatorcontrib>Hao, Xiahui ; Chen, Wenchao ; Amato, Alberto ; Jouhet, Juliette ; Maréchal, Eric ; Moog, Daniel ; Hu, Hanhua ; Jin, Hu ; You, Lingjie ; Huang, Fenghong ; Moosburner, Mark ; Allen, Andrew E. ; Gong, Yangmin</creatorcontrib><description>Summary Long‐chain acyl‐CoA synthetases (LACS) play diverse and fundamentally important roles in lipid metabolism. While their functions have been well established in bacteria, yeast and plants, the mechanisms by which LACS isozymes regulate lipid metabolism in unicellular oil‐producing microalgae, including the diatom Phaeodactylum tricornutum, remain largely unknown. In P. tricornutum, a family of five genes (ptACSL1–ptACSL5) encodes LACS activities. We generated single lacs knockout/knockdown mutants using multiplexed CRISPR/Cas9 method, and determined their substrate specificities towards different fatty acids (FAs) and subcellular localisations. ptACSL3 is localised in the mitochondria and its disruption led to compromised growth and reduced triacylglycerol (TAG) content when cells were bubbled with air. The ptACSL3 mutants showed altered FA profiles in two galactoglycerolipids and phosphatidylcholine (PC) with significantly reduced distribution of 16:0 and 16:1. ptACSL5 is localised in the peroxisome and its knockdown resulted in reduced growth rate and altered molecular species of PC and TAG, indicating a role in controlling the composition of acyl‐CoAs for lipid synthesis. Our work demonstrates the potential of generating gene knockout mutants with the mutation of large fragment deletion using multiplexed CRISPR/Cas9 and provides insight into the functions of LACS isozymes in lipid metabolism in the oleaginous microalgae.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.17911</identifier><identifier>PMID: 34882804</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Algae ; Aquatic microorganisms ; Coenzyme A - genetics ; Coenzyme A - metabolism ; Coenzyme A Ligases - genetics ; Coenzyme A Ligases - metabolism ; CRISPR ; CRISPR-Cas Systems - genetics ; Diatoms ; Diatoms - genetics ; Diatoms - metabolism ; fatty acid ; Fatty acids ; Fatty Acids - metabolism ; Gene deletion ; Gene editing ; Growth rate ; Isoenzymes ; Lecithin ; Lipid metabolism ; Lipids ; long‐chain acyl‐CoA synthetase ; Metabolism ; Microalgae ; Mitochondria ; Mitochondria - metabolism ; multiplexed CRISPR/Cas9 ; Multiplexing ; Mutants ; Mutation ; Phaeodactylum tricornutum ; Phosphatidylcholine ; Phytoplankton ; Storage ; Substrates ; Synthesis ; triacylglycerol ; Triglycerides ; Yeasts</subject><ispartof>The New phytologist, 2022-02, Vol.233 (4), p.1797-1812</ispartof><rights>2021 The Authors. © 2021 New Phytologist Foundation</rights><rights>2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.</rights><rights>Copyright © 2022 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3881-9f1984dc4f3e72e374645871bc5a686c477260167ecbc942808e15a1e2df8e513</citedby><cites>FETCH-LOGICAL-c3881-9f1984dc4f3e72e374645871bc5a686c477260167ecbc942808e15a1e2df8e513</cites><orcidid>0000-0002-8672-8742 ; 0000-0002-4096-3640 ; 0000-0001-5911-6081 ; 0000-0002-8485-7591 ; 0000-0002-9126-5535</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnph.17911$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnph.17911$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34882804$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hao, Xiahui</creatorcontrib><creatorcontrib>Chen, Wenchao</creatorcontrib><creatorcontrib>Amato, Alberto</creatorcontrib><creatorcontrib>Jouhet, Juliette</creatorcontrib><creatorcontrib>Maréchal, Eric</creatorcontrib><creatorcontrib>Moog, Daniel</creatorcontrib><creatorcontrib>Hu, Hanhua</creatorcontrib><creatorcontrib>Jin, Hu</creatorcontrib><creatorcontrib>You, Lingjie</creatorcontrib><creatorcontrib>Huang, Fenghong</creatorcontrib><creatorcontrib>Moosburner, Mark</creatorcontrib><creatorcontrib>Allen, Andrew E.</creatorcontrib><creatorcontrib>Gong, Yangmin</creatorcontrib><title>Multiplexed CRISPR/Cas9 editing of the long‐chain acyl‐CoA synthetase family in the diatom Phaeodactylum tricornutum reveals that mitochondrial ptACSL3 is involved in the synthesis of storage lipids</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Summary Long‐chain acyl‐CoA synthetases (LACS) play diverse and fundamentally important roles in lipid metabolism. While their functions have been well established in bacteria, yeast and plants, the mechanisms by which LACS isozymes regulate lipid metabolism in unicellular oil‐producing microalgae, including the diatom Phaeodactylum tricornutum, remain largely unknown. In P. tricornutum, a family of five genes (ptACSL1–ptACSL5) encodes LACS activities. We generated single lacs knockout/knockdown mutants using multiplexed CRISPR/Cas9 method, and determined their substrate specificities towards different fatty acids (FAs) and subcellular localisations. ptACSL3 is localised in the mitochondria and its disruption led to compromised growth and reduced triacylglycerol (TAG) content when cells were bubbled with air. The ptACSL3 mutants showed altered FA profiles in two galactoglycerolipids and phosphatidylcholine (PC) with significantly reduced distribution of 16:0 and 16:1. ptACSL5 is localised in the peroxisome and its knockdown resulted in reduced growth rate and altered molecular species of PC and TAG, indicating a role in controlling the composition of acyl‐CoAs for lipid synthesis. Our work demonstrates the potential of generating gene knockout mutants with the mutation of large fragment deletion using multiplexed CRISPR/Cas9 and provides insight into the functions of LACS isozymes in lipid metabolism in the oleaginous microalgae.</description><subject>Algae</subject><subject>Aquatic microorganisms</subject><subject>Coenzyme A - genetics</subject><subject>Coenzyme A - metabolism</subject><subject>Coenzyme A Ligases - genetics</subject><subject>Coenzyme A Ligases - metabolism</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>Diatoms</subject><subject>Diatoms - genetics</subject><subject>Diatoms - metabolism</subject><subject>fatty acid</subject><subject>Fatty acids</subject><subject>Fatty Acids - metabolism</subject><subject>Gene deletion</subject><subject>Gene editing</subject><subject>Growth rate</subject><subject>Isoenzymes</subject><subject>Lecithin</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>long‐chain acyl‐CoA synthetase</subject><subject>Metabolism</subject><subject>Microalgae</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>multiplexed CRISPR/Cas9</subject><subject>Multiplexing</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Phaeodactylum tricornutum</subject><subject>Phosphatidylcholine</subject><subject>Phytoplankton</subject><subject>Storage</subject><subject>Substrates</subject><subject>Synthesis</subject><subject>triacylglycerol</subject><subject>Triglycerides</subject><subject>Yeasts</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUFu1DAYhS0EokNhwQWQJTawSCdOnMRZjiKglQYYtSCxizzOn4krJw62M5AdR-BcHIOT8JcMLJDwxrbe9z8_-RHylMUXDNd6GLsLVpSM3SMrxvMyEiwt7pNVHCciynn-6Yw88v42juMyy5OH5CzlQiQi5ivy4-1kgh4NfIWGVtdXN7vrdSV9SaHRQQ8HalsaOqDGDoef376rTuqBSjUbvFR2Q_08oBykB9rKXpuZon430GgZbE93nQTbSBVmM_U0OK2sG6aAZwdHkMYjLAPtdbCqs0PjtDR0DJvqZptS7dHtaM0Rs51sl_c8KhjMB-vkAcPpUTf-MXnQoiE8Oe3n5OPrVx-qy2j7_s1VtdlGKhWCRWXLSsEbxdsUigTSguc8EwXbq0zmIle8KJI8ZnkBaq9Kjt8kgGWSQdK0AjKWnpMXi-_o7OcJfKh77RUYIwewk69xWmRpxhKO6PN_0Fs7uQHTIZUwxssiy5B6uVDKWe8dtPXodC_dXLO4viu4xoLr3wUj--zkOO17aP6SfxpFYL0AX7SB-f9O9bvd5WL5C6OetD0</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Hao, Xiahui</creator><creator>Chen, Wenchao</creator><creator>Amato, Alberto</creator><creator>Jouhet, Juliette</creator><creator>Maréchal, Eric</creator><creator>Moog, Daniel</creator><creator>Hu, Hanhua</creator><creator>Jin, Hu</creator><creator>You, Lingjie</creator><creator>Huang, Fenghong</creator><creator>Moosburner, Mark</creator><creator>Allen, Andrew E.</creator><creator>Gong, Yangmin</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8672-8742</orcidid><orcidid>https://orcid.org/0000-0002-4096-3640</orcidid><orcidid>https://orcid.org/0000-0001-5911-6081</orcidid><orcidid>https://orcid.org/0000-0002-8485-7591</orcidid><orcidid>https://orcid.org/0000-0002-9126-5535</orcidid></search><sort><creationdate>202202</creationdate><title>Multiplexed CRISPR/Cas9 editing of the long‐chain acyl‐CoA synthetase family in the diatom Phaeodactylum tricornutum reveals that mitochondrial ptACSL3 is involved in the synthesis of storage lipids</title><author>Hao, Xiahui ; Chen, Wenchao ; Amato, Alberto ; Jouhet, Juliette ; Maréchal, Eric ; Moog, Daniel ; Hu, Hanhua ; Jin, Hu ; You, Lingjie ; Huang, Fenghong ; Moosburner, Mark ; Allen, Andrew E. ; Gong, Yangmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3881-9f1984dc4f3e72e374645871bc5a686c477260167ecbc942808e15a1e2df8e513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algae</topic><topic>Aquatic microorganisms</topic><topic>Coenzyme A - genetics</topic><topic>Coenzyme A - metabolism</topic><topic>Coenzyme A Ligases - genetics</topic><topic>Coenzyme A Ligases - metabolism</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>Diatoms</topic><topic>Diatoms - genetics</topic><topic>Diatoms - metabolism</topic><topic>fatty acid</topic><topic>Fatty acids</topic><topic>Fatty Acids - metabolism</topic><topic>Gene deletion</topic><topic>Gene editing</topic><topic>Growth rate</topic><topic>Isoenzymes</topic><topic>Lecithin</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>long‐chain acyl‐CoA synthetase</topic><topic>Metabolism</topic><topic>Microalgae</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>multiplexed CRISPR/Cas9</topic><topic>Multiplexing</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Phaeodactylum tricornutum</topic><topic>Phosphatidylcholine</topic><topic>Phytoplankton</topic><topic>Storage</topic><topic>Substrates</topic><topic>Synthesis</topic><topic>triacylglycerol</topic><topic>Triglycerides</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Xiahui</creatorcontrib><creatorcontrib>Chen, Wenchao</creatorcontrib><creatorcontrib>Amato, Alberto</creatorcontrib><creatorcontrib>Jouhet, Juliette</creatorcontrib><creatorcontrib>Maréchal, Eric</creatorcontrib><creatorcontrib>Moog, Daniel</creatorcontrib><creatorcontrib>Hu, Hanhua</creatorcontrib><creatorcontrib>Jin, Hu</creatorcontrib><creatorcontrib>You, Lingjie</creatorcontrib><creatorcontrib>Huang, Fenghong</creatorcontrib><creatorcontrib>Moosburner, Mark</creatorcontrib><creatorcontrib>Allen, Andrew E.</creatorcontrib><creatorcontrib>Gong, Yangmin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Xiahui</au><au>Chen, Wenchao</au><au>Amato, Alberto</au><au>Jouhet, Juliette</au><au>Maréchal, Eric</au><au>Moog, Daniel</au><au>Hu, Hanhua</au><au>Jin, Hu</au><au>You, Lingjie</au><au>Huang, Fenghong</au><au>Moosburner, Mark</au><au>Allen, Andrew E.</au><au>Gong, Yangmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiplexed CRISPR/Cas9 editing of the long‐chain acyl‐CoA synthetase family in the diatom Phaeodactylum tricornutum reveals that mitochondrial ptACSL3 is involved in the synthesis of storage lipids</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2022-02</date><risdate>2022</risdate><volume>233</volume><issue>4</issue><spage>1797</spage><epage>1812</epage><pages>1797-1812</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Summary Long‐chain acyl‐CoA synthetases (LACS) play diverse and fundamentally important roles in lipid metabolism. While their functions have been well established in bacteria, yeast and plants, the mechanisms by which LACS isozymes regulate lipid metabolism in unicellular oil‐producing microalgae, including the diatom Phaeodactylum tricornutum, remain largely unknown. In P. tricornutum, a family of five genes (ptACSL1–ptACSL5) encodes LACS activities. We generated single lacs knockout/knockdown mutants using multiplexed CRISPR/Cas9 method, and determined their substrate specificities towards different fatty acids (FAs) and subcellular localisations. ptACSL3 is localised in the mitochondria and its disruption led to compromised growth and reduced triacylglycerol (TAG) content when cells were bubbled with air. The ptACSL3 mutants showed altered FA profiles in two galactoglycerolipids and phosphatidylcholine (PC) with significantly reduced distribution of 16:0 and 16:1. ptACSL5 is localised in the peroxisome and its knockdown resulted in reduced growth rate and altered molecular species of PC and TAG, indicating a role in controlling the composition of acyl‐CoAs for lipid synthesis. Our work demonstrates the potential of generating gene knockout mutants with the mutation of large fragment deletion using multiplexed CRISPR/Cas9 and provides insight into the functions of LACS isozymes in lipid metabolism in the oleaginous microalgae.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34882804</pmid><doi>10.1111/nph.17911</doi><tpages>1812</tpages><orcidid>https://orcid.org/0000-0002-8672-8742</orcidid><orcidid>https://orcid.org/0000-0002-4096-3640</orcidid><orcidid>https://orcid.org/0000-0001-5911-6081</orcidid><orcidid>https://orcid.org/0000-0002-8485-7591</orcidid><orcidid>https://orcid.org/0000-0002-9126-5535</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2022-02, Vol.233 (4), p.1797-1812
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_2608535124
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algae
Aquatic microorganisms
Coenzyme A - genetics
Coenzyme A - metabolism
Coenzyme A Ligases - genetics
Coenzyme A Ligases - metabolism
CRISPR
CRISPR-Cas Systems - genetics
Diatoms
Diatoms - genetics
Diatoms - metabolism
fatty acid
Fatty acids
Fatty Acids - metabolism
Gene deletion
Gene editing
Growth rate
Isoenzymes
Lecithin
Lipid metabolism
Lipids
long‐chain acyl‐CoA synthetase
Metabolism
Microalgae
Mitochondria
Mitochondria - metabolism
multiplexed CRISPR/Cas9
Multiplexing
Mutants
Mutation
Phaeodactylum tricornutum
Phosphatidylcholine
Phytoplankton
Storage
Substrates
Synthesis
triacylglycerol
Triglycerides
Yeasts
title Multiplexed CRISPR/Cas9 editing of the long‐chain acyl‐CoA synthetase family in the diatom Phaeodactylum tricornutum reveals that mitochondrial ptACSL3 is involved in the synthesis of storage lipids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A22%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiplexed%20CRISPR/Cas9%20editing%20of%20the%20long%E2%80%90chain%20acyl%E2%80%90CoA%20synthetase%20family%20in%20the%20diatom%20Phaeodactylum%20tricornutum%20reveals%20that%20mitochondrial%20ptACSL3%20is%20involved%20in%20the%20synthesis%20of%20storage%20lipids&rft.jtitle=The%20New%20phytologist&rft.au=Hao,%20Xiahui&rft.date=2022-02&rft.volume=233&rft.issue=4&rft.spage=1797&rft.epage=1812&rft.pages=1797-1812&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.17911&rft_dat=%3Cproquest_cross%3E2621149755%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621149755&rft_id=info:pmid/34882804&rfr_iscdi=true