Study on the Formation Mechanism of Surface Adhered Damage in Ball-End Milling Ti6Al4V

Ball-end cutters are widely used for machining the parts of Ti-6Al-4V, which have the problem of poor machined surface quality due to the low cutting speed near the tool tip. In this paper, through the experiments of inclined surface machining in different feed directions, it is found that the surfa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2021-11, Vol.14 (23), p.7143
Hauptverfasser: Zhang, Anshan, Yue, Caixu, Liu, Xianli, Liang, Steven Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page 7143
container_title Materials
container_volume 14
creator Zhang, Anshan
Yue, Caixu
Liu, Xianli
Liang, Steven Y.
description Ball-end cutters are widely used for machining the parts of Ti-6Al-4V, which have the problem of poor machined surface quality due to the low cutting speed near the tool tip. In this paper, through the experiments of inclined surface machining in different feed directions, it is found that the surface adhered damages will form on the machined surface under certain tool postures. It is determined that the formation of surface adhered damage is related to the material adhesion near the cutting edge and the cutting-into/out position within the tool per-rotation cycle. In order to analyze the cutting-into/out process more clearly under different tool postures, the projection models of the cutting edge and the cutter workpiece engagement on the contact plane are established; thus, the complex geometry problem of space is transformed into that of plane. Combined with the case of cutting-into/out, chip morphology, and surface morphology, the formation mechanism of surface adhered damage is analyzed. The analysis results show that the adhered damage can increase the height parameters Sku, Sz, Sp, and Sv of surface topographies. Sz, Sp, and Sv of the normal machined surface without damage (Sku ≈ 3) are about 4–6, 2–3, and 2–3 μm, while Sz, Sp, and Sv with adhered damage (Sku > 3) can reach about 8–20, 4–14, and 3–6 μm in down-milling and 10–25, 7–18, and 3–7 μm in up-milling. The feed direction should be selected along the upper left (Q2: β ∈ [0°, 90°]) or lower left (Q3: β ∈ [90°, 180°]) to avoid surface adhered damage in the down-milling process. For up-milling, the feed direction should be selected along the upper right (Q1: β ∈ (−90°, 0°]) or upper left (Q2: β ∈ [0°, 90°)).
doi_str_mv 10.3390/ma14237143
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2608533933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608533933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-c63c770a360778f1b7a403a318c49adabf7c81ac5c7a6a73b4f9490f82520d5d3</originalsourceid><addsrcrecordid>eNpdkU1PHDEMhiPUChDlwi-I1EtVaWgyzkySS6UFlrYSiAMf18ibyewGZRJIZpD498wC6pcvtuVHr17bhBxxdgyg2bcBuahBcgE7ZJ9r3VZcC_Hhr3qPHJZyz-YA4KrWu2QPhFJNreU-ubsep-6ZpkjHjaPnKQ84-rm7dHaD0ZeBpp5eT7lH6-ii27jsOnqGA64d9ZGeYAjVMnb00ofg45re-HYRxN0n8rHHUNzhez4gt-fLm9Of1cXVj1-ni4vKgoKxsi1YKRlCy6RUPV9JFAxwtmmFxg5XvbSKo22sxBYlrESvhWa9qpuadU0HB-T7m-7DtBpcZ10cMwbzkP2A-dkk9ObfSfQbs05PRrWNAs1ngS_vAjk9Tq6MZvDFuhAwujQVU7dMNfOhAWb083_ofZpynNd7pbhgbbMV_PpG2ZxKya7_bYYzs_2Y-fMxeAEtRoVA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608140651</pqid></control><display><type>article</type><title>Study on the Formation Mechanism of Surface Adhered Damage in Ball-End Milling Ti6Al4V</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Anshan ; Yue, Caixu ; Liu, Xianli ; Liang, Steven Y.</creator><creatorcontrib>Zhang, Anshan ; Yue, Caixu ; Liu, Xianli ; Liang, Steven Y.</creatorcontrib><description>Ball-end cutters are widely used for machining the parts of Ti-6Al-4V, which have the problem of poor machined surface quality due to the low cutting speed near the tool tip. In this paper, through the experiments of inclined surface machining in different feed directions, it is found that the surface adhered damages will form on the machined surface under certain tool postures. It is determined that the formation of surface adhered damage is related to the material adhesion near the cutting edge and the cutting-into/out position within the tool per-rotation cycle. In order to analyze the cutting-into/out process more clearly under different tool postures, the projection models of the cutting edge and the cutter workpiece engagement on the contact plane are established; thus, the complex geometry problem of space is transformed into that of plane. Combined with the case of cutting-into/out, chip morphology, and surface morphology, the formation mechanism of surface adhered damage is analyzed. The analysis results show that the adhered damage can increase the height parameters Sku, Sz, Sp, and Sv of surface topographies. Sz, Sp, and Sv of the normal machined surface without damage (Sku ≈ 3) are about 4–6, 2–3, and 2–3 μm, while Sz, Sp, and Sv with adhered damage (Sku &gt; 3) can reach about 8–20, 4–14, and 3–6 μm in down-milling and 10–25, 7–18, and 3–7 μm in up-milling. The feed direction should be selected along the upper left (Q2: β ∈ [0°, 90°]) or lower left (Q3: β ∈ [90°, 180°]) to avoid surface adhered damage in the down-milling process. For up-milling, the feed direction should be selected along the upper right (Q1: β ∈ (−90°, 0°]) or upper left (Q2: β ∈ [0°, 90°)).</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14237143</identifier><identifier>PMID: 34885297</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aluminum alloys ; Ball-end milling ; Cutting parameters ; Cutting speed ; Damage ; End milling cutters ; Experiments ; Feed direction ; Heat conductivity ; Machine tools ; Morphology ; Projection model ; Protective coatings ; Stress concentration ; Surface properties ; Titanium alloys ; Titanium base alloys ; Topography ; Workpieces</subject><ispartof>Materials, 2021-11, Vol.14 (23), p.7143</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-c63c770a360778f1b7a403a318c49adabf7c81ac5c7a6a73b4f9490f82520d5d3</citedby><cites>FETCH-LOGICAL-c383t-c63c770a360778f1b7a403a318c49adabf7c81ac5c7a6a73b4f9490f82520d5d3</cites><orcidid>0000-0002-4070-0701</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658391/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658391/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Zhang, Anshan</creatorcontrib><creatorcontrib>Yue, Caixu</creatorcontrib><creatorcontrib>Liu, Xianli</creatorcontrib><creatorcontrib>Liang, Steven Y.</creatorcontrib><title>Study on the Formation Mechanism of Surface Adhered Damage in Ball-End Milling Ti6Al4V</title><title>Materials</title><description>Ball-end cutters are widely used for machining the parts of Ti-6Al-4V, which have the problem of poor machined surface quality due to the low cutting speed near the tool tip. In this paper, through the experiments of inclined surface machining in different feed directions, it is found that the surface adhered damages will form on the machined surface under certain tool postures. It is determined that the formation of surface adhered damage is related to the material adhesion near the cutting edge and the cutting-into/out position within the tool per-rotation cycle. In order to analyze the cutting-into/out process more clearly under different tool postures, the projection models of the cutting edge and the cutter workpiece engagement on the contact plane are established; thus, the complex geometry problem of space is transformed into that of plane. Combined with the case of cutting-into/out, chip morphology, and surface morphology, the formation mechanism of surface adhered damage is analyzed. The analysis results show that the adhered damage can increase the height parameters Sku, Sz, Sp, and Sv of surface topographies. Sz, Sp, and Sv of the normal machined surface without damage (Sku ≈ 3) are about 4–6, 2–3, and 2–3 μm, while Sz, Sp, and Sv with adhered damage (Sku &gt; 3) can reach about 8–20, 4–14, and 3–6 μm in down-milling and 10–25, 7–18, and 3–7 μm in up-milling. The feed direction should be selected along the upper left (Q2: β ∈ [0°, 90°]) or lower left (Q3: β ∈ [90°, 180°]) to avoid surface adhered damage in the down-milling process. For up-milling, the feed direction should be selected along the upper right (Q1: β ∈ (−90°, 0°]) or upper left (Q2: β ∈ [0°, 90°)).</description><subject>Aluminum alloys</subject><subject>Ball-end milling</subject><subject>Cutting parameters</subject><subject>Cutting speed</subject><subject>Damage</subject><subject>End milling cutters</subject><subject>Experiments</subject><subject>Feed direction</subject><subject>Heat conductivity</subject><subject>Machine tools</subject><subject>Morphology</subject><subject>Projection model</subject><subject>Protective coatings</subject><subject>Stress concentration</subject><subject>Surface properties</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Topography</subject><subject>Workpieces</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkU1PHDEMhiPUChDlwi-I1EtVaWgyzkySS6UFlrYSiAMf18ibyewGZRJIZpD498wC6pcvtuVHr17bhBxxdgyg2bcBuahBcgE7ZJ9r3VZcC_Hhr3qPHJZyz-YA4KrWu2QPhFJNreU-ubsep-6ZpkjHjaPnKQ84-rm7dHaD0ZeBpp5eT7lH6-ii27jsOnqGA64d9ZGeYAjVMnb00ofg45re-HYRxN0n8rHHUNzhez4gt-fLm9Of1cXVj1-ni4vKgoKxsi1YKRlCy6RUPV9JFAxwtmmFxg5XvbSKo22sxBYlrESvhWa9qpuadU0HB-T7m-7DtBpcZ10cMwbzkP2A-dkk9ObfSfQbs05PRrWNAs1ngS_vAjk9Tq6MZvDFuhAwujQVU7dMNfOhAWb083_ofZpynNd7pbhgbbMV_PpG2ZxKya7_bYYzs_2Y-fMxeAEtRoVA</recordid><startdate>20211124</startdate><enddate>20211124</enddate><creator>Zhang, Anshan</creator><creator>Yue, Caixu</creator><creator>Liu, Xianli</creator><creator>Liang, Steven Y.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4070-0701</orcidid></search><sort><creationdate>20211124</creationdate><title>Study on the Formation Mechanism of Surface Adhered Damage in Ball-End Milling Ti6Al4V</title><author>Zhang, Anshan ; Yue, Caixu ; Liu, Xianli ; Liang, Steven Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-c63c770a360778f1b7a403a318c49adabf7c81ac5c7a6a73b4f9490f82520d5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum alloys</topic><topic>Ball-end milling</topic><topic>Cutting parameters</topic><topic>Cutting speed</topic><topic>Damage</topic><topic>End milling cutters</topic><topic>Experiments</topic><topic>Feed direction</topic><topic>Heat conductivity</topic><topic>Machine tools</topic><topic>Morphology</topic><topic>Projection model</topic><topic>Protective coatings</topic><topic>Stress concentration</topic><topic>Surface properties</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Topography</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Anshan</creatorcontrib><creatorcontrib>Yue, Caixu</creatorcontrib><creatorcontrib>Liu, Xianli</creatorcontrib><creatorcontrib>Liang, Steven Y.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Anshan</au><au>Yue, Caixu</au><au>Liu, Xianli</au><au>Liang, Steven Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on the Formation Mechanism of Surface Adhered Damage in Ball-End Milling Ti6Al4V</atitle><jtitle>Materials</jtitle><date>2021-11-24</date><risdate>2021</risdate><volume>14</volume><issue>23</issue><spage>7143</spage><pages>7143-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Ball-end cutters are widely used for machining the parts of Ti-6Al-4V, which have the problem of poor machined surface quality due to the low cutting speed near the tool tip. In this paper, through the experiments of inclined surface machining in different feed directions, it is found that the surface adhered damages will form on the machined surface under certain tool postures. It is determined that the formation of surface adhered damage is related to the material adhesion near the cutting edge and the cutting-into/out position within the tool per-rotation cycle. In order to analyze the cutting-into/out process more clearly under different tool postures, the projection models of the cutting edge and the cutter workpiece engagement on the contact plane are established; thus, the complex geometry problem of space is transformed into that of plane. Combined with the case of cutting-into/out, chip morphology, and surface morphology, the formation mechanism of surface adhered damage is analyzed. The analysis results show that the adhered damage can increase the height parameters Sku, Sz, Sp, and Sv of surface topographies. Sz, Sp, and Sv of the normal machined surface without damage (Sku ≈ 3) are about 4–6, 2–3, and 2–3 μm, while Sz, Sp, and Sv with adhered damage (Sku &gt; 3) can reach about 8–20, 4–14, and 3–6 μm in down-milling and 10–25, 7–18, and 3–7 μm in up-milling. The feed direction should be selected along the upper left (Q2: β ∈ [0°, 90°]) or lower left (Q3: β ∈ [90°, 180°]) to avoid surface adhered damage in the down-milling process. For up-milling, the feed direction should be selected along the upper right (Q1: β ∈ (−90°, 0°]) or upper left (Q2: β ∈ [0°, 90°)).</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34885297</pmid><doi>10.3390/ma14237143</doi><orcidid>https://orcid.org/0000-0002-4070-0701</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2021-11, Vol.14 (23), p.7143
issn 1996-1944
1996-1944
language eng
recordid cdi_proquest_miscellaneous_2608533933
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Aluminum alloys
Ball-end milling
Cutting parameters
Cutting speed
Damage
End milling cutters
Experiments
Feed direction
Heat conductivity
Machine tools
Morphology
Projection model
Protective coatings
Stress concentration
Surface properties
Titanium alloys
Titanium base alloys
Topography
Workpieces
title Study on the Formation Mechanism of Surface Adhered Damage in Ball-End Milling Ti6Al4V
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A18%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20the%20Formation%20Mechanism%20of%20Surface%20Adhered%20Damage%20in%20Ball-End%20Milling%20Ti6Al4V&rft.jtitle=Materials&rft.au=Zhang,%20Anshan&rft.date=2021-11-24&rft.volume=14&rft.issue=23&rft.spage=7143&rft.pages=7143-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14237143&rft_dat=%3Cproquest_pubme%3E2608533933%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608140651&rft_id=info:pmid/34885297&rfr_iscdi=true