Study on the Formation Mechanism of Surface Adhered Damage in Ball-End Milling Ti6Al4V
Ball-end cutters are widely used for machining the parts of Ti-6Al-4V, which have the problem of poor machined surface quality due to the low cutting speed near the tool tip. In this paper, through the experiments of inclined surface machining in different feed directions, it is found that the surfa...
Gespeichert in:
Veröffentlicht in: | Materials 2021-11, Vol.14 (23), p.7143 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | 7143 |
container_title | Materials |
container_volume | 14 |
creator | Zhang, Anshan Yue, Caixu Liu, Xianli Liang, Steven Y. |
description | Ball-end cutters are widely used for machining the parts of Ti-6Al-4V, which have the problem of poor machined surface quality due to the low cutting speed near the tool tip. In this paper, through the experiments of inclined surface machining in different feed directions, it is found that the surface adhered damages will form on the machined surface under certain tool postures. It is determined that the formation of surface adhered damage is related to the material adhesion near the cutting edge and the cutting-into/out position within the tool per-rotation cycle. In order to analyze the cutting-into/out process more clearly under different tool postures, the projection models of the cutting edge and the cutter workpiece engagement on the contact plane are established; thus, the complex geometry problem of space is transformed into that of plane. Combined with the case of cutting-into/out, chip morphology, and surface morphology, the formation mechanism of surface adhered damage is analyzed. The analysis results show that the adhered damage can increase the height parameters Sku, Sz, Sp, and Sv of surface topographies. Sz, Sp, and Sv of the normal machined surface without damage (Sku ≈ 3) are about 4–6, 2–3, and 2–3 μm, while Sz, Sp, and Sv with adhered damage (Sku > 3) can reach about 8–20, 4–14, and 3–6 μm in down-milling and 10–25, 7–18, and 3–7 μm in up-milling. The feed direction should be selected along the upper left (Q2: β ∈ [0°, 90°]) or lower left (Q3: β ∈ [90°, 180°]) to avoid surface adhered damage in the down-milling process. For up-milling, the feed direction should be selected along the upper right (Q1: β ∈ (−90°, 0°]) or upper left (Q2: β ∈ [0°, 90°)). |
doi_str_mv | 10.3390/ma14237143 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2608533933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608533933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-c63c770a360778f1b7a403a318c49adabf7c81ac5c7a6a73b4f9490f82520d5d3</originalsourceid><addsrcrecordid>eNpdkU1PHDEMhiPUChDlwi-I1EtVaWgyzkySS6UFlrYSiAMf18ibyewGZRJIZpD498wC6pcvtuVHr17bhBxxdgyg2bcBuahBcgE7ZJ9r3VZcC_Hhr3qPHJZyz-YA4KrWu2QPhFJNreU-ubsep-6ZpkjHjaPnKQ84-rm7dHaD0ZeBpp5eT7lH6-ii27jsOnqGA64d9ZGeYAjVMnb00ofg45re-HYRxN0n8rHHUNzhez4gt-fLm9Of1cXVj1-ni4vKgoKxsi1YKRlCy6RUPV9JFAxwtmmFxg5XvbSKo22sxBYlrESvhWa9qpuadU0HB-T7m-7DtBpcZ10cMwbzkP2A-dkk9ObfSfQbs05PRrWNAs1ngS_vAjk9Tq6MZvDFuhAwujQVU7dMNfOhAWb083_ofZpynNd7pbhgbbMV_PpG2ZxKya7_bYYzs_2Y-fMxeAEtRoVA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608140651</pqid></control><display><type>article</type><title>Study on the Formation Mechanism of Surface Adhered Damage in Ball-End Milling Ti6Al4V</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Anshan ; Yue, Caixu ; Liu, Xianli ; Liang, Steven Y.</creator><creatorcontrib>Zhang, Anshan ; Yue, Caixu ; Liu, Xianli ; Liang, Steven Y.</creatorcontrib><description>Ball-end cutters are widely used for machining the parts of Ti-6Al-4V, which have the problem of poor machined surface quality due to the low cutting speed near the tool tip. In this paper, through the experiments of inclined surface machining in different feed directions, it is found that the surface adhered damages will form on the machined surface under certain tool postures. It is determined that the formation of surface adhered damage is related to the material adhesion near the cutting edge and the cutting-into/out position within the tool per-rotation cycle. In order to analyze the cutting-into/out process more clearly under different tool postures, the projection models of the cutting edge and the cutter workpiece engagement on the contact plane are established; thus, the complex geometry problem of space is transformed into that of plane. Combined with the case of cutting-into/out, chip morphology, and surface morphology, the formation mechanism of surface adhered damage is analyzed. The analysis results show that the adhered damage can increase the height parameters Sku, Sz, Sp, and Sv of surface topographies. Sz, Sp, and Sv of the normal machined surface without damage (Sku ≈ 3) are about 4–6, 2–3, and 2–3 μm, while Sz, Sp, and Sv with adhered damage (Sku > 3) can reach about 8–20, 4–14, and 3–6 μm in down-milling and 10–25, 7–18, and 3–7 μm in up-milling. The feed direction should be selected along the upper left (Q2: β ∈ [0°, 90°]) or lower left (Q3: β ∈ [90°, 180°]) to avoid surface adhered damage in the down-milling process. For up-milling, the feed direction should be selected along the upper right (Q1: β ∈ (−90°, 0°]) or upper left (Q2: β ∈ [0°, 90°)).</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14237143</identifier><identifier>PMID: 34885297</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aluminum alloys ; Ball-end milling ; Cutting parameters ; Cutting speed ; Damage ; End milling cutters ; Experiments ; Feed direction ; Heat conductivity ; Machine tools ; Morphology ; Projection model ; Protective coatings ; Stress concentration ; Surface properties ; Titanium alloys ; Titanium base alloys ; Topography ; Workpieces</subject><ispartof>Materials, 2021-11, Vol.14 (23), p.7143</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-c63c770a360778f1b7a403a318c49adabf7c81ac5c7a6a73b4f9490f82520d5d3</citedby><cites>FETCH-LOGICAL-c383t-c63c770a360778f1b7a403a318c49adabf7c81ac5c7a6a73b4f9490f82520d5d3</cites><orcidid>0000-0002-4070-0701</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658391/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8658391/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Zhang, Anshan</creatorcontrib><creatorcontrib>Yue, Caixu</creatorcontrib><creatorcontrib>Liu, Xianli</creatorcontrib><creatorcontrib>Liang, Steven Y.</creatorcontrib><title>Study on the Formation Mechanism of Surface Adhered Damage in Ball-End Milling Ti6Al4V</title><title>Materials</title><description>Ball-end cutters are widely used for machining the parts of Ti-6Al-4V, which have the problem of poor machined surface quality due to the low cutting speed near the tool tip. In this paper, through the experiments of inclined surface machining in different feed directions, it is found that the surface adhered damages will form on the machined surface under certain tool postures. It is determined that the formation of surface adhered damage is related to the material adhesion near the cutting edge and the cutting-into/out position within the tool per-rotation cycle. In order to analyze the cutting-into/out process more clearly under different tool postures, the projection models of the cutting edge and the cutter workpiece engagement on the contact plane are established; thus, the complex geometry problem of space is transformed into that of plane. Combined with the case of cutting-into/out, chip morphology, and surface morphology, the formation mechanism of surface adhered damage is analyzed. The analysis results show that the adhered damage can increase the height parameters Sku, Sz, Sp, and Sv of surface topographies. Sz, Sp, and Sv of the normal machined surface without damage (Sku ≈ 3) are about 4–6, 2–3, and 2–3 μm, while Sz, Sp, and Sv with adhered damage (Sku > 3) can reach about 8–20, 4–14, and 3–6 μm in down-milling and 10–25, 7–18, and 3–7 μm in up-milling. The feed direction should be selected along the upper left (Q2: β ∈ [0°, 90°]) or lower left (Q3: β ∈ [90°, 180°]) to avoid surface adhered damage in the down-milling process. For up-milling, the feed direction should be selected along the upper right (Q1: β ∈ (−90°, 0°]) or upper left (Q2: β ∈ [0°, 90°)).</description><subject>Aluminum alloys</subject><subject>Ball-end milling</subject><subject>Cutting parameters</subject><subject>Cutting speed</subject><subject>Damage</subject><subject>End milling cutters</subject><subject>Experiments</subject><subject>Feed direction</subject><subject>Heat conductivity</subject><subject>Machine tools</subject><subject>Morphology</subject><subject>Projection model</subject><subject>Protective coatings</subject><subject>Stress concentration</subject><subject>Surface properties</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Topography</subject><subject>Workpieces</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkU1PHDEMhiPUChDlwi-I1EtVaWgyzkySS6UFlrYSiAMf18ibyewGZRJIZpD498wC6pcvtuVHr17bhBxxdgyg2bcBuahBcgE7ZJ9r3VZcC_Hhr3qPHJZyz-YA4KrWu2QPhFJNreU-ubsep-6ZpkjHjaPnKQ84-rm7dHaD0ZeBpp5eT7lH6-ii27jsOnqGA64d9ZGeYAjVMnb00ofg45re-HYRxN0n8rHHUNzhez4gt-fLm9Of1cXVj1-ni4vKgoKxsi1YKRlCy6RUPV9JFAxwtmmFxg5XvbSKo22sxBYlrESvhWa9qpuadU0HB-T7m-7DtBpcZ10cMwbzkP2A-dkk9ObfSfQbs05PRrWNAs1ngS_vAjk9Tq6MZvDFuhAwujQVU7dMNfOhAWb083_ofZpynNd7pbhgbbMV_PpG2ZxKya7_bYYzs_2Y-fMxeAEtRoVA</recordid><startdate>20211124</startdate><enddate>20211124</enddate><creator>Zhang, Anshan</creator><creator>Yue, Caixu</creator><creator>Liu, Xianli</creator><creator>Liang, Steven Y.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4070-0701</orcidid></search><sort><creationdate>20211124</creationdate><title>Study on the Formation Mechanism of Surface Adhered Damage in Ball-End Milling Ti6Al4V</title><author>Zhang, Anshan ; Yue, Caixu ; Liu, Xianli ; Liang, Steven Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-c63c770a360778f1b7a403a318c49adabf7c81ac5c7a6a73b4f9490f82520d5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum alloys</topic><topic>Ball-end milling</topic><topic>Cutting parameters</topic><topic>Cutting speed</topic><topic>Damage</topic><topic>End milling cutters</topic><topic>Experiments</topic><topic>Feed direction</topic><topic>Heat conductivity</topic><topic>Machine tools</topic><topic>Morphology</topic><topic>Projection model</topic><topic>Protective coatings</topic><topic>Stress concentration</topic><topic>Surface properties</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Topography</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Anshan</creatorcontrib><creatorcontrib>Yue, Caixu</creatorcontrib><creatorcontrib>Liu, Xianli</creatorcontrib><creatorcontrib>Liang, Steven Y.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Anshan</au><au>Yue, Caixu</au><au>Liu, Xianli</au><au>Liang, Steven Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on the Formation Mechanism of Surface Adhered Damage in Ball-End Milling Ti6Al4V</atitle><jtitle>Materials</jtitle><date>2021-11-24</date><risdate>2021</risdate><volume>14</volume><issue>23</issue><spage>7143</spage><pages>7143-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Ball-end cutters are widely used for machining the parts of Ti-6Al-4V, which have the problem of poor machined surface quality due to the low cutting speed near the tool tip. In this paper, through the experiments of inclined surface machining in different feed directions, it is found that the surface adhered damages will form on the machined surface under certain tool postures. It is determined that the formation of surface adhered damage is related to the material adhesion near the cutting edge and the cutting-into/out position within the tool per-rotation cycle. In order to analyze the cutting-into/out process more clearly under different tool postures, the projection models of the cutting edge and the cutter workpiece engagement on the contact plane are established; thus, the complex geometry problem of space is transformed into that of plane. Combined with the case of cutting-into/out, chip morphology, and surface morphology, the formation mechanism of surface adhered damage is analyzed. The analysis results show that the adhered damage can increase the height parameters Sku, Sz, Sp, and Sv of surface topographies. Sz, Sp, and Sv of the normal machined surface without damage (Sku ≈ 3) are about 4–6, 2–3, and 2–3 μm, while Sz, Sp, and Sv with adhered damage (Sku > 3) can reach about 8–20, 4–14, and 3–6 μm in down-milling and 10–25, 7–18, and 3–7 μm in up-milling. The feed direction should be selected along the upper left (Q2: β ∈ [0°, 90°]) or lower left (Q3: β ∈ [90°, 180°]) to avoid surface adhered damage in the down-milling process. For up-milling, the feed direction should be selected along the upper right (Q1: β ∈ (−90°, 0°]) or upper left (Q2: β ∈ [0°, 90°)).</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34885297</pmid><doi>10.3390/ma14237143</doi><orcidid>https://orcid.org/0000-0002-4070-0701</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2021-11, Vol.14 (23), p.7143 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_proquest_miscellaneous_2608533933 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Aluminum alloys Ball-end milling Cutting parameters Cutting speed Damage End milling cutters Experiments Feed direction Heat conductivity Machine tools Morphology Projection model Protective coatings Stress concentration Surface properties Titanium alloys Titanium base alloys Topography Workpieces |
title | Study on the Formation Mechanism of Surface Adhered Damage in Ball-End Milling Ti6Al4V |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A18%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20the%20Formation%20Mechanism%20of%20Surface%20Adhered%20Damage%20in%20Ball-End%20Milling%20Ti6Al4V&rft.jtitle=Materials&rft.au=Zhang,%20Anshan&rft.date=2021-11-24&rft.volume=14&rft.issue=23&rft.spage=7143&rft.pages=7143-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14237143&rft_dat=%3Cproquest_pubme%3E2608533933%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608140651&rft_id=info:pmid/34885297&rfr_iscdi=true |