Decoupling of degradation from deadenylation reshapes poly(A) tail length in yeast meiosis
Nascent messenger RNA is endowed with a poly(A) tail that is subject to gradual deadenylation and subsequent degradation in the cytoplasm. Deadenylation and degradation rates are typically correlated, rendering it difficult to dissect the determinants governing each of these processes and the mechan...
Gespeichert in:
Veröffentlicht in: | Nature structural & molecular biology 2021-12, Vol.28 (12), p.1038-1049 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1049 |
---|---|
container_issue | 12 |
container_start_page | 1038 |
container_title | Nature structural & molecular biology |
container_volume | 28 |
creator | Wiener, David Antebi, Yaron Schwartz, Schraga |
description | Nascent messenger RNA is endowed with a poly(A) tail that is subject to gradual deadenylation and subsequent degradation in the cytoplasm. Deadenylation and degradation rates are typically correlated, rendering it difficult to dissect the determinants governing each of these processes and the mechanistic basis of their coupling. Here we developed an approach that allows systematic, robust and multiplexed quantification of poly(A) tails in
Saccharomyces cerevisiae
. Our results suggest that mRNA deadenylation and degradation rates are decoupled during meiosis, and that transcript length is a major determinant of deadenylation rates and a key contributor to reshaping of poly(A) tail lengths. Meiosis-specific decoupling also leads to unique positive associations between poly(A) tail length and gene expression. The decoupling is associated with a focal localization pattern of the RNA degradation factor Xrn1, and can be phenocopied by Xrn1 deletion under nonmeiotic conditions. Importantly, the association of transcript length with deadenylation rates is conserved across eukaryotes. Our study uncovers a factor that shapes deadenylation rate and reveals a unique context in which degradation is decoupled from deadenylation.
The discovery that mRNA degradation and deadenylation are uncoupled during meiosis in budding yeast provides a unique context to examine the regulation of each process individually, and reveals that transcript length is a determinant of deadenylation rates across eukaryotes. |
doi_str_mv | 10.1038/s41594-021-00694-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2608532490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A686159750</galeid><sourcerecordid>A686159750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-c66ed899b4ce979ade33742c8883189b06a9d4e8f781d87bb84dd76bf573833a3</originalsourceid><addsrcrecordid>eNp9kctq3TAQhkVpaNK0L9BFMXSTLJxKlqzL8pDeAoFC22yyEbI1dhRsyZVsyHn76sRpwgmlaKFh9M0_M_oRekfwGcFUfkyM1IqVuCIlxjxH9AU6IjWrS6Vk_fIxVvQQvU7pFuOqrgV9hQ4pk1LUXByh60_QhmUanO-L0BUW-mismV3wRRfDmBPGgt8OaypCujETpGIKw_Zkc1rMxg3FAL6fbwrniy2YNBcjuJBceoMOOjMkePtwH6OrL59_nX8rL79_vTjfXJYtE3wuW87BSqUa1oISKrejVLCqlVJSIlWDuVGWgeyEJFaKppHMWsGbLq8iKTX0GJ2sulMMvxdIsx5damEYjIewJF1xLGtaMYUz-uEZehuW6PN091TFCSH0ierNANr5LszRtDtRveGS508X9U7r7B9UPhZG1wYPncv5vYLTvYLMzHA392ZJSV_8_LHPVivbxpBShE5P0Y0mbjXBeme-Xs3X2Xx9b77ezf3-YbulGcE-lvx1OwN0BVJ-8j3Ep_X_I_sHpHW3Pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608261113</pqid></control><display><type>article</type><title>Decoupling of degradation from deadenylation reshapes poly(A) tail length in yeast meiosis</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Wiener, David ; Antebi, Yaron ; Schwartz, Schraga</creator><creatorcontrib>Wiener, David ; Antebi, Yaron ; Schwartz, Schraga</creatorcontrib><description>Nascent messenger RNA is endowed with a poly(A) tail that is subject to gradual deadenylation and subsequent degradation in the cytoplasm. Deadenylation and degradation rates are typically correlated, rendering it difficult to dissect the determinants governing each of these processes and the mechanistic basis of their coupling. Here we developed an approach that allows systematic, robust and multiplexed quantification of poly(A) tails in
Saccharomyces cerevisiae
. Our results suggest that mRNA deadenylation and degradation rates are decoupled during meiosis, and that transcript length is a major determinant of deadenylation rates and a key contributor to reshaping of poly(A) tail lengths. Meiosis-specific decoupling also leads to unique positive associations between poly(A) tail length and gene expression. The decoupling is associated with a focal localization pattern of the RNA degradation factor Xrn1, and can be phenocopied by Xrn1 deletion under nonmeiotic conditions. Importantly, the association of transcript length with deadenylation rates is conserved across eukaryotes. Our study uncovers a factor that shapes deadenylation rate and reveals a unique context in which degradation is decoupled from deadenylation.
The discovery that mRNA degradation and deadenylation are uncoupled during meiosis in budding yeast provides a unique context to examine the regulation of each process individually, and reveals that transcript length is a determinant of deadenylation rates across eukaryotes.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/s41594-021-00694-3</identifier><identifier>PMID: 34887567</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13 ; 14/35 ; 14/63 ; 38 ; 38/47 ; 38/77 ; 38/91 ; 631/114/2163 ; 631/337/1645/2020 ; Adenosine - chemistry ; Biochemistry ; Biodegradation ; Biological Microscopy ; Biomedical and Life Sciences ; Chemical properties ; Context ; Cytoplasm ; Decomposition (Chemistry) ; Decoupling ; Degradation ; Eukaryotes ; Exoribonucleases - metabolism ; Gene expression ; Gene Expression - genetics ; Genetic aspects ; Life Sciences ; Localization ; Meiosis ; Meiosis - genetics ; Membrane Biology ; Messenger RNA ; Physiological aspects ; Poly A - chemistry ; Polyadenine ; Polyadenylation ; Protein Structure ; Ribonucleic acid ; RNA ; RNA Stability - genetics ; RNA, Fungal - metabolism ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism ; Structure ; Transcription ; Yeast ; Yeast fungi ; Yeasts</subject><ispartof>Nature structural & molecular biology, 2021-12, Vol.28 (12), p.1038-1049</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-c66ed899b4ce979ade33742c8883189b06a9d4e8f781d87bb84dd76bf573833a3</citedby><cites>FETCH-LOGICAL-c476t-c66ed899b4ce979ade33742c8883189b06a9d4e8f781d87bb84dd76bf573833a3</cites><orcidid>0000-0002-3671-9709 ; 0000-0002-5771-6814</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41594-021-00694-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41594-021-00694-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34887567$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wiener, David</creatorcontrib><creatorcontrib>Antebi, Yaron</creatorcontrib><creatorcontrib>Schwartz, Schraga</creatorcontrib><title>Decoupling of degradation from deadenylation reshapes poly(A) tail length in yeast meiosis</title><title>Nature structural & molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>Nascent messenger RNA is endowed with a poly(A) tail that is subject to gradual deadenylation and subsequent degradation in the cytoplasm. Deadenylation and degradation rates are typically correlated, rendering it difficult to dissect the determinants governing each of these processes and the mechanistic basis of their coupling. Here we developed an approach that allows systematic, robust and multiplexed quantification of poly(A) tails in
Saccharomyces cerevisiae
. Our results suggest that mRNA deadenylation and degradation rates are decoupled during meiosis, and that transcript length is a major determinant of deadenylation rates and a key contributor to reshaping of poly(A) tail lengths. Meiosis-specific decoupling also leads to unique positive associations between poly(A) tail length and gene expression. The decoupling is associated with a focal localization pattern of the RNA degradation factor Xrn1, and can be phenocopied by Xrn1 deletion under nonmeiotic conditions. Importantly, the association of transcript length with deadenylation rates is conserved across eukaryotes. Our study uncovers a factor that shapes deadenylation rate and reveals a unique context in which degradation is decoupled from deadenylation.
The discovery that mRNA degradation and deadenylation are uncoupled during meiosis in budding yeast provides a unique context to examine the regulation of each process individually, and reveals that transcript length is a determinant of deadenylation rates across eukaryotes.</description><subject>13</subject><subject>14/35</subject><subject>14/63</subject><subject>38</subject><subject>38/47</subject><subject>38/77</subject><subject>38/91</subject><subject>631/114/2163</subject><subject>631/337/1645/2020</subject><subject>Adenosine - chemistry</subject><subject>Biochemistry</subject><subject>Biodegradation</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Chemical properties</subject><subject>Context</subject><subject>Cytoplasm</subject><subject>Decomposition (Chemistry)</subject><subject>Decoupling</subject><subject>Degradation</subject><subject>Eukaryotes</subject><subject>Exoribonucleases - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression - genetics</subject><subject>Genetic aspects</subject><subject>Life Sciences</subject><subject>Localization</subject><subject>Meiosis</subject><subject>Meiosis - genetics</subject><subject>Membrane Biology</subject><subject>Messenger RNA</subject><subject>Physiological aspects</subject><subject>Poly A - chemistry</subject><subject>Polyadenine</subject><subject>Polyadenylation</subject><subject>Protein Structure</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA Stability - genetics</subject><subject>RNA, Fungal - metabolism</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Structure</subject><subject>Transcription</subject><subject>Yeast</subject><subject>Yeast fungi</subject><subject>Yeasts</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kctq3TAQhkVpaNK0L9BFMXSTLJxKlqzL8pDeAoFC22yyEbI1dhRsyZVsyHn76sRpwgmlaKFh9M0_M_oRekfwGcFUfkyM1IqVuCIlxjxH9AU6IjWrS6Vk_fIxVvQQvU7pFuOqrgV9hQ4pk1LUXByh60_QhmUanO-L0BUW-mismV3wRRfDmBPGgt8OaypCujETpGIKw_Zkc1rMxg3FAL6fbwrniy2YNBcjuJBceoMOOjMkePtwH6OrL59_nX8rL79_vTjfXJYtE3wuW87BSqUa1oISKrejVLCqlVJSIlWDuVGWgeyEJFaKppHMWsGbLq8iKTX0GJ2sulMMvxdIsx5damEYjIewJF1xLGtaMYUz-uEZehuW6PN091TFCSH0ierNANr5LszRtDtRveGS508X9U7r7B9UPhZG1wYPncv5vYLTvYLMzHA392ZJSV_8_LHPVivbxpBShE5P0Y0mbjXBeme-Xs3X2Xx9b77ezf3-YbulGcE-lvx1OwN0BVJ-8j3Ep_X_I_sHpHW3Pw</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Wiener, David</creator><creator>Antebi, Yaron</creator><creator>Schwartz, Schraga</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3671-9709</orcidid><orcidid>https://orcid.org/0000-0002-5771-6814</orcidid></search><sort><creationdate>20211201</creationdate><title>Decoupling of degradation from deadenylation reshapes poly(A) tail length in yeast meiosis</title><author>Wiener, David ; Antebi, Yaron ; Schwartz, Schraga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-c66ed899b4ce979ade33742c8883189b06a9d4e8f781d87bb84dd76bf573833a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13</topic><topic>14/35</topic><topic>14/63</topic><topic>38</topic><topic>38/47</topic><topic>38/77</topic><topic>38/91</topic><topic>631/114/2163</topic><topic>631/337/1645/2020</topic><topic>Adenosine - chemistry</topic><topic>Biochemistry</topic><topic>Biodegradation</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Chemical properties</topic><topic>Context</topic><topic>Cytoplasm</topic><topic>Decomposition (Chemistry)</topic><topic>Decoupling</topic><topic>Degradation</topic><topic>Eukaryotes</topic><topic>Exoribonucleases - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression - genetics</topic><topic>Genetic aspects</topic><topic>Life Sciences</topic><topic>Localization</topic><topic>Meiosis</topic><topic>Meiosis - genetics</topic><topic>Membrane Biology</topic><topic>Messenger RNA</topic><topic>Physiological aspects</topic><topic>Poly A - chemistry</topic><topic>Polyadenine</topic><topic>Polyadenylation</topic><topic>Protein Structure</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA Stability - genetics</topic><topic>RNA, Fungal - metabolism</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Structure</topic><topic>Transcription</topic><topic>Yeast</topic><topic>Yeast fungi</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wiener, David</creatorcontrib><creatorcontrib>Antebi, Yaron</creatorcontrib><creatorcontrib>Schwartz, Schraga</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature structural & molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wiener, David</au><au>Antebi, Yaron</au><au>Schwartz, Schraga</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoupling of degradation from deadenylation reshapes poly(A) tail length in yeast meiosis</atitle><jtitle>Nature structural & molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>28</volume><issue>12</issue><spage>1038</spage><epage>1049</epage><pages>1038-1049</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>Nascent messenger RNA is endowed with a poly(A) tail that is subject to gradual deadenylation and subsequent degradation in the cytoplasm. Deadenylation and degradation rates are typically correlated, rendering it difficult to dissect the determinants governing each of these processes and the mechanistic basis of their coupling. Here we developed an approach that allows systematic, robust and multiplexed quantification of poly(A) tails in
Saccharomyces cerevisiae
. Our results suggest that mRNA deadenylation and degradation rates are decoupled during meiosis, and that transcript length is a major determinant of deadenylation rates and a key contributor to reshaping of poly(A) tail lengths. Meiosis-specific decoupling also leads to unique positive associations between poly(A) tail length and gene expression. The decoupling is associated with a focal localization pattern of the RNA degradation factor Xrn1, and can be phenocopied by Xrn1 deletion under nonmeiotic conditions. Importantly, the association of transcript length with deadenylation rates is conserved across eukaryotes. Our study uncovers a factor that shapes deadenylation rate and reveals a unique context in which degradation is decoupled from deadenylation.
The discovery that mRNA degradation and deadenylation are uncoupled during meiosis in budding yeast provides a unique context to examine the regulation of each process individually, and reveals that transcript length is a determinant of deadenylation rates across eukaryotes.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>34887567</pmid><doi>10.1038/s41594-021-00694-3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3671-9709</orcidid><orcidid>https://orcid.org/0000-0002-5771-6814</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-9993 |
ispartof | Nature structural & molecular biology, 2021-12, Vol.28 (12), p.1038-1049 |
issn | 1545-9993 1545-9985 |
language | eng |
recordid | cdi_proquest_miscellaneous_2608532490 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 13 14/35 14/63 38 38/47 38/77 38/91 631/114/2163 631/337/1645/2020 Adenosine - chemistry Biochemistry Biodegradation Biological Microscopy Biomedical and Life Sciences Chemical properties Context Cytoplasm Decomposition (Chemistry) Decoupling Degradation Eukaryotes Exoribonucleases - metabolism Gene expression Gene Expression - genetics Genetic aspects Life Sciences Localization Meiosis Meiosis - genetics Membrane Biology Messenger RNA Physiological aspects Poly A - chemistry Polyadenine Polyadenylation Protein Structure Ribonucleic acid RNA RNA Stability - genetics RNA, Fungal - metabolism RNA, Messenger - genetics RNA, Messenger - metabolism Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - metabolism Structure Transcription Yeast Yeast fungi Yeasts |
title | Decoupling of degradation from deadenylation reshapes poly(A) tail length in yeast meiosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A01%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoupling%20of%20degradation%20from%20deadenylation%20reshapes%20poly(A)%20tail%20length%20in%20yeast%20meiosis&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Wiener,%20David&rft.date=2021-12-01&rft.volume=28&rft.issue=12&rft.spage=1038&rft.epage=1049&rft.pages=1038-1049&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/s41594-021-00694-3&rft_dat=%3Cgale_proqu%3EA686159750%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608261113&rft_id=info:pmid/34887567&rft_galeid=A686159750&rfr_iscdi=true |