Decoupling of degradation from deadenylation reshapes poly(A) tail length in yeast meiosis

Nascent messenger RNA is endowed with a poly(A) tail that is subject to gradual deadenylation and subsequent degradation in the cytoplasm. Deadenylation and degradation rates are typically correlated, rendering it difficult to dissect the determinants governing each of these processes and the mechan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature structural & molecular biology 2021-12, Vol.28 (12), p.1038-1049
Hauptverfasser: Wiener, David, Antebi, Yaron, Schwartz, Schraga
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1049
container_issue 12
container_start_page 1038
container_title Nature structural & molecular biology
container_volume 28
creator Wiener, David
Antebi, Yaron
Schwartz, Schraga
description Nascent messenger RNA is endowed with a poly(A) tail that is subject to gradual deadenylation and subsequent degradation in the cytoplasm. Deadenylation and degradation rates are typically correlated, rendering it difficult to dissect the determinants governing each of these processes and the mechanistic basis of their coupling. Here we developed an approach that allows systematic, robust and multiplexed quantification of poly(A) tails in Saccharomyces cerevisiae . Our results suggest that mRNA deadenylation and degradation rates are decoupled during meiosis, and that transcript length is a major determinant of deadenylation rates and a key contributor to reshaping of poly(A) tail lengths. Meiosis-specific decoupling also leads to unique positive associations between poly(A) tail length and gene expression. The decoupling is associated with a focal localization pattern of the RNA degradation factor Xrn1, and can be phenocopied by Xrn1 deletion under nonmeiotic conditions. Importantly, the association of transcript length with deadenylation rates is conserved across eukaryotes. Our study uncovers a factor that shapes deadenylation rate and reveals a unique context in which degradation is decoupled from deadenylation. The discovery that mRNA degradation and deadenylation are uncoupled during meiosis in budding yeast provides a unique context to examine the regulation of each process individually, and reveals that transcript length is a determinant of deadenylation rates across eukaryotes.
doi_str_mv 10.1038/s41594-021-00694-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2608532490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A686159750</galeid><sourcerecordid>A686159750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-c66ed899b4ce979ade33742c8883189b06a9d4e8f781d87bb84dd76bf573833a3</originalsourceid><addsrcrecordid>eNp9kctq3TAQhkVpaNK0L9BFMXSTLJxKlqzL8pDeAoFC22yyEbI1dhRsyZVsyHn76sRpwgmlaKFh9M0_M_oRekfwGcFUfkyM1IqVuCIlxjxH9AU6IjWrS6Vk_fIxVvQQvU7pFuOqrgV9hQ4pk1LUXByh60_QhmUanO-L0BUW-mismV3wRRfDmBPGgt8OaypCujETpGIKw_Zkc1rMxg3FAL6fbwrniy2YNBcjuJBceoMOOjMkePtwH6OrL59_nX8rL79_vTjfXJYtE3wuW87BSqUa1oISKrejVLCqlVJSIlWDuVGWgeyEJFaKppHMWsGbLq8iKTX0GJ2sulMMvxdIsx5damEYjIewJF1xLGtaMYUz-uEZehuW6PN091TFCSH0ierNANr5LszRtDtRveGS508X9U7r7B9UPhZG1wYPncv5vYLTvYLMzHA392ZJSV_8_LHPVivbxpBShE5P0Y0mbjXBeme-Xs3X2Xx9b77ezf3-YbulGcE-lvx1OwN0BVJ-8j3Ep_X_I_sHpHW3Pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608261113</pqid></control><display><type>article</type><title>Decoupling of degradation from deadenylation reshapes poly(A) tail length in yeast meiosis</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Wiener, David ; Antebi, Yaron ; Schwartz, Schraga</creator><creatorcontrib>Wiener, David ; Antebi, Yaron ; Schwartz, Schraga</creatorcontrib><description>Nascent messenger RNA is endowed with a poly(A) tail that is subject to gradual deadenylation and subsequent degradation in the cytoplasm. Deadenylation and degradation rates are typically correlated, rendering it difficult to dissect the determinants governing each of these processes and the mechanistic basis of their coupling. Here we developed an approach that allows systematic, robust and multiplexed quantification of poly(A) tails in Saccharomyces cerevisiae . Our results suggest that mRNA deadenylation and degradation rates are decoupled during meiosis, and that transcript length is a major determinant of deadenylation rates and a key contributor to reshaping of poly(A) tail lengths. Meiosis-specific decoupling also leads to unique positive associations between poly(A) tail length and gene expression. The decoupling is associated with a focal localization pattern of the RNA degradation factor Xrn1, and can be phenocopied by Xrn1 deletion under nonmeiotic conditions. Importantly, the association of transcript length with deadenylation rates is conserved across eukaryotes. Our study uncovers a factor that shapes deadenylation rate and reveals a unique context in which degradation is decoupled from deadenylation. The discovery that mRNA degradation and deadenylation are uncoupled during meiosis in budding yeast provides a unique context to examine the regulation of each process individually, and reveals that transcript length is a determinant of deadenylation rates across eukaryotes.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/s41594-021-00694-3</identifier><identifier>PMID: 34887567</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13 ; 14/35 ; 14/63 ; 38 ; 38/47 ; 38/77 ; 38/91 ; 631/114/2163 ; 631/337/1645/2020 ; Adenosine - chemistry ; Biochemistry ; Biodegradation ; Biological Microscopy ; Biomedical and Life Sciences ; Chemical properties ; Context ; Cytoplasm ; Decomposition (Chemistry) ; Decoupling ; Degradation ; Eukaryotes ; Exoribonucleases - metabolism ; Gene expression ; Gene Expression - genetics ; Genetic aspects ; Life Sciences ; Localization ; Meiosis ; Meiosis - genetics ; Membrane Biology ; Messenger RNA ; Physiological aspects ; Poly A - chemistry ; Polyadenine ; Polyadenylation ; Protein Structure ; Ribonucleic acid ; RNA ; RNA Stability - genetics ; RNA, Fungal - metabolism ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism ; Structure ; Transcription ; Yeast ; Yeast fungi ; Yeasts</subject><ispartof>Nature structural &amp; molecular biology, 2021-12, Vol.28 (12), p.1038-1049</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-c66ed899b4ce979ade33742c8883189b06a9d4e8f781d87bb84dd76bf573833a3</citedby><cites>FETCH-LOGICAL-c476t-c66ed899b4ce979ade33742c8883189b06a9d4e8f781d87bb84dd76bf573833a3</cites><orcidid>0000-0002-3671-9709 ; 0000-0002-5771-6814</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41594-021-00694-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41594-021-00694-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34887567$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wiener, David</creatorcontrib><creatorcontrib>Antebi, Yaron</creatorcontrib><creatorcontrib>Schwartz, Schraga</creatorcontrib><title>Decoupling of degradation from deadenylation reshapes poly(A) tail length in yeast meiosis</title><title>Nature structural &amp; molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>Nascent messenger RNA is endowed with a poly(A) tail that is subject to gradual deadenylation and subsequent degradation in the cytoplasm. Deadenylation and degradation rates are typically correlated, rendering it difficult to dissect the determinants governing each of these processes and the mechanistic basis of their coupling. Here we developed an approach that allows systematic, robust and multiplexed quantification of poly(A) tails in Saccharomyces cerevisiae . Our results suggest that mRNA deadenylation and degradation rates are decoupled during meiosis, and that transcript length is a major determinant of deadenylation rates and a key contributor to reshaping of poly(A) tail lengths. Meiosis-specific decoupling also leads to unique positive associations between poly(A) tail length and gene expression. The decoupling is associated with a focal localization pattern of the RNA degradation factor Xrn1, and can be phenocopied by Xrn1 deletion under nonmeiotic conditions. Importantly, the association of transcript length with deadenylation rates is conserved across eukaryotes. Our study uncovers a factor that shapes deadenylation rate and reveals a unique context in which degradation is decoupled from deadenylation. The discovery that mRNA degradation and deadenylation are uncoupled during meiosis in budding yeast provides a unique context to examine the regulation of each process individually, and reveals that transcript length is a determinant of deadenylation rates across eukaryotes.</description><subject>13</subject><subject>14/35</subject><subject>14/63</subject><subject>38</subject><subject>38/47</subject><subject>38/77</subject><subject>38/91</subject><subject>631/114/2163</subject><subject>631/337/1645/2020</subject><subject>Adenosine - chemistry</subject><subject>Biochemistry</subject><subject>Biodegradation</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Chemical properties</subject><subject>Context</subject><subject>Cytoplasm</subject><subject>Decomposition (Chemistry)</subject><subject>Decoupling</subject><subject>Degradation</subject><subject>Eukaryotes</subject><subject>Exoribonucleases - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression - genetics</subject><subject>Genetic aspects</subject><subject>Life Sciences</subject><subject>Localization</subject><subject>Meiosis</subject><subject>Meiosis - genetics</subject><subject>Membrane Biology</subject><subject>Messenger RNA</subject><subject>Physiological aspects</subject><subject>Poly A - chemistry</subject><subject>Polyadenine</subject><subject>Polyadenylation</subject><subject>Protein Structure</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA Stability - genetics</subject><subject>RNA, Fungal - metabolism</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Structure</subject><subject>Transcription</subject><subject>Yeast</subject><subject>Yeast fungi</subject><subject>Yeasts</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kctq3TAQhkVpaNK0L9BFMXSTLJxKlqzL8pDeAoFC22yyEbI1dhRsyZVsyHn76sRpwgmlaKFh9M0_M_oRekfwGcFUfkyM1IqVuCIlxjxH9AU6IjWrS6Vk_fIxVvQQvU7pFuOqrgV9hQ4pk1LUXByh60_QhmUanO-L0BUW-mismV3wRRfDmBPGgt8OaypCujETpGIKw_Zkc1rMxg3FAL6fbwrniy2YNBcjuJBceoMOOjMkePtwH6OrL59_nX8rL79_vTjfXJYtE3wuW87BSqUa1oISKrejVLCqlVJSIlWDuVGWgeyEJFaKppHMWsGbLq8iKTX0GJ2sulMMvxdIsx5damEYjIewJF1xLGtaMYUz-uEZehuW6PN091TFCSH0ierNANr5LszRtDtRveGS508X9U7r7B9UPhZG1wYPncv5vYLTvYLMzHA392ZJSV_8_LHPVivbxpBShE5P0Y0mbjXBeme-Xs3X2Xx9b77ezf3-YbulGcE-lvx1OwN0BVJ-8j3Ep_X_I_sHpHW3Pw</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Wiener, David</creator><creator>Antebi, Yaron</creator><creator>Schwartz, Schraga</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3671-9709</orcidid><orcidid>https://orcid.org/0000-0002-5771-6814</orcidid></search><sort><creationdate>20211201</creationdate><title>Decoupling of degradation from deadenylation reshapes poly(A) tail length in yeast meiosis</title><author>Wiener, David ; Antebi, Yaron ; Schwartz, Schraga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-c66ed899b4ce979ade33742c8883189b06a9d4e8f781d87bb84dd76bf573833a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13</topic><topic>14/35</topic><topic>14/63</topic><topic>38</topic><topic>38/47</topic><topic>38/77</topic><topic>38/91</topic><topic>631/114/2163</topic><topic>631/337/1645/2020</topic><topic>Adenosine - chemistry</topic><topic>Biochemistry</topic><topic>Biodegradation</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Chemical properties</topic><topic>Context</topic><topic>Cytoplasm</topic><topic>Decomposition (Chemistry)</topic><topic>Decoupling</topic><topic>Degradation</topic><topic>Eukaryotes</topic><topic>Exoribonucleases - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression - genetics</topic><topic>Genetic aspects</topic><topic>Life Sciences</topic><topic>Localization</topic><topic>Meiosis</topic><topic>Meiosis - genetics</topic><topic>Membrane Biology</topic><topic>Messenger RNA</topic><topic>Physiological aspects</topic><topic>Poly A - chemistry</topic><topic>Polyadenine</topic><topic>Polyadenylation</topic><topic>Protein Structure</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA Stability - genetics</topic><topic>RNA, Fungal - metabolism</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Structure</topic><topic>Transcription</topic><topic>Yeast</topic><topic>Yeast fungi</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wiener, David</creatorcontrib><creatorcontrib>Antebi, Yaron</creatorcontrib><creatorcontrib>Schwartz, Schraga</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature structural &amp; molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wiener, David</au><au>Antebi, Yaron</au><au>Schwartz, Schraga</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoupling of degradation from deadenylation reshapes poly(A) tail length in yeast meiosis</atitle><jtitle>Nature structural &amp; molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>28</volume><issue>12</issue><spage>1038</spage><epage>1049</epage><pages>1038-1049</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>Nascent messenger RNA is endowed with a poly(A) tail that is subject to gradual deadenylation and subsequent degradation in the cytoplasm. Deadenylation and degradation rates are typically correlated, rendering it difficult to dissect the determinants governing each of these processes and the mechanistic basis of their coupling. Here we developed an approach that allows systematic, robust and multiplexed quantification of poly(A) tails in Saccharomyces cerevisiae . Our results suggest that mRNA deadenylation and degradation rates are decoupled during meiosis, and that transcript length is a major determinant of deadenylation rates and a key contributor to reshaping of poly(A) tail lengths. Meiosis-specific decoupling also leads to unique positive associations between poly(A) tail length and gene expression. The decoupling is associated with a focal localization pattern of the RNA degradation factor Xrn1, and can be phenocopied by Xrn1 deletion under nonmeiotic conditions. Importantly, the association of transcript length with deadenylation rates is conserved across eukaryotes. Our study uncovers a factor that shapes deadenylation rate and reveals a unique context in which degradation is decoupled from deadenylation. The discovery that mRNA degradation and deadenylation are uncoupled during meiosis in budding yeast provides a unique context to examine the regulation of each process individually, and reveals that transcript length is a determinant of deadenylation rates across eukaryotes.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>34887567</pmid><doi>10.1038/s41594-021-00694-3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3671-9709</orcidid><orcidid>https://orcid.org/0000-0002-5771-6814</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1545-9993
ispartof Nature structural & molecular biology, 2021-12, Vol.28 (12), p.1038-1049
issn 1545-9993
1545-9985
language eng
recordid cdi_proquest_miscellaneous_2608532490
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 13
14/35
14/63
38
38/47
38/77
38/91
631/114/2163
631/337/1645/2020
Adenosine - chemistry
Biochemistry
Biodegradation
Biological Microscopy
Biomedical and Life Sciences
Chemical properties
Context
Cytoplasm
Decomposition (Chemistry)
Decoupling
Degradation
Eukaryotes
Exoribonucleases - metabolism
Gene expression
Gene Expression - genetics
Genetic aspects
Life Sciences
Localization
Meiosis
Meiosis - genetics
Membrane Biology
Messenger RNA
Physiological aspects
Poly A - chemistry
Polyadenine
Polyadenylation
Protein Structure
Ribonucleic acid
RNA
RNA Stability - genetics
RNA, Fungal - metabolism
RNA, Messenger - genetics
RNA, Messenger - metabolism
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - metabolism
Structure
Transcription
Yeast
Yeast fungi
Yeasts
title Decoupling of degradation from deadenylation reshapes poly(A) tail length in yeast meiosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A01%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoupling%20of%20degradation%20from%20deadenylation%20reshapes%20poly(A)%20tail%20length%20in%20yeast%20meiosis&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Wiener,%20David&rft.date=2021-12-01&rft.volume=28&rft.issue=12&rft.spage=1038&rft.epage=1049&rft.pages=1038-1049&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/s41594-021-00694-3&rft_dat=%3Cgale_proqu%3EA686159750%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608261113&rft_id=info:pmid/34887567&rft_galeid=A686159750&rfr_iscdi=true