Non-genetic determinants of malignant clonal fitness at single-cell resolution

All cancers emerge after a period of clonal selection and subsequent clonal expansion. Although the evolutionary principles imparted by genetic intratumour heterogeneity are becoming increasingly clear 1 , little is known about the non-genetic mechanisms that contribute to intratumour heterogeneity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2022-01, Vol.601 (7891), p.125-131
Hauptverfasser: Fennell, Katie A., Vassiliadis, Dane, Lam, Enid Y. N., Martelotto, Luciano G., Balic, Jesse J., Hollizeck, Sebastian, Weber, Tom S., Semple, Timothy, Wang, Qing, Miles, Denise C., MacPherson, Laura, Chan, Yih-Chih, Guirguis, Andrew A., Kats, Lev M., Wong, Emily S., Dawson, Sarah-Jane, Naik, Shalin H., Dawson, Mark A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 131
container_issue 7891
container_start_page 125
container_title Nature (London)
container_volume 601
creator Fennell, Katie A.
Vassiliadis, Dane
Lam, Enid Y. N.
Martelotto, Luciano G.
Balic, Jesse J.
Hollizeck, Sebastian
Weber, Tom S.
Semple, Timothy
Wang, Qing
Miles, Denise C.
MacPherson, Laura
Chan, Yih-Chih
Guirguis, Andrew A.
Kats, Lev M.
Wong, Emily S.
Dawson, Sarah-Jane
Naik, Shalin H.
Dawson, Mark A.
description All cancers emerge after a period of clonal selection and subsequent clonal expansion. Although the evolutionary principles imparted by genetic intratumour heterogeneity are becoming increasingly clear 1 , little is known about the non-genetic mechanisms that contribute to intratumour heterogeneity and malignant clonal fitness 2 . Here, using single-cell profiling and lineage tracing (SPLINTR)—an expressed barcoding strategy—we trace isogenic clones in three clinically relevant mouse models of acute myeloid leukaemia. We find that malignant clonal dominance is a cell-intrinsic and heritable property that is facilitated by the repression of antigen presentation and increased expression of the secretory leukocyte peptidase inhibitor gene ( Slpi ), which we genetically validate as a regulator of acute myeloid leukaemia. Increased transcriptional heterogeneity is a feature that enables clonal fitness in diverse tissues and immune microenvironments and in the context of clonal competition between genetically distinct clones. Similar to haematopoietic stem cells 3 , leukaemia stem cells (LSCs) display heritable clone-intrinsic properties of high, and low clonal output that contribute to the overall tumour mass. We demonstrate that LSC clonal output dictates sensitivity to chemotherapy and, although high- and low-output clones adapt differently to therapeutic pressure, they coordinately emerge from minimal residual disease with increased expression of the LSC program. Together, these data provide fundamental insights into the non-genetic transcriptional processes that underpin malignant clonal fitness and may inform future therapeutic strategies. Non-genetic malignant clonal dominance is a cell-intrinsic and heritable property that underpins clonal output and response to therapy in cancer. 
doi_str_mv 10.1038/s41586-021-04206-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2608532426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2617721724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-62abef1cf3a7b33d608130fa9135debf59e18c9e4ae5e4eab88fc9513d4707403</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOl5ewIUU3LiJnlyapEsRbzDoRtchbU-GSpto0i58ezuOF3Dh6hDO9_9JPkKOGZwzEOYiS1YaRYEzCpKDonqLLJjUikpl9DZZAHBDwQi1R_ZzfgGAkmm5S_aENAZkpRbk4SEGusKAY9cULY6Yhi64MOYi-mJwfbdan4qmj8H1he_GgDkXbixyF1Y90gb7vkiYYz-NXQyHZMe7PuPR1zwgzzfXT1d3dPl4e391uaSNlGykirsaPWu8cLoWolVgmADvKibKFmtfVshMU6F0WKJEVxvjm6pkopUatARxQM42va8pvk2YRzt0ef0WFzBO2fK5sRRccjWjp3_Qlzil-TdrimnNmeZypviGalLMOaG3r6kbXHq3DOzatt3YtrNt-2nb6jl08lU91QO2P5FvvTMgNkCeV2GF6ffuf2o_ACOyipk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617721724</pqid></control><display><type>article</type><title>Non-genetic determinants of malignant clonal fitness at single-cell resolution</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Fennell, Katie A. ; Vassiliadis, Dane ; Lam, Enid Y. N. ; Martelotto, Luciano G. ; Balic, Jesse J. ; Hollizeck, Sebastian ; Weber, Tom S. ; Semple, Timothy ; Wang, Qing ; Miles, Denise C. ; MacPherson, Laura ; Chan, Yih-Chih ; Guirguis, Andrew A. ; Kats, Lev M. ; Wong, Emily S. ; Dawson, Sarah-Jane ; Naik, Shalin H. ; Dawson, Mark A.</creator><creatorcontrib>Fennell, Katie A. ; Vassiliadis, Dane ; Lam, Enid Y. N. ; Martelotto, Luciano G. ; Balic, Jesse J. ; Hollizeck, Sebastian ; Weber, Tom S. ; Semple, Timothy ; Wang, Qing ; Miles, Denise C. ; MacPherson, Laura ; Chan, Yih-Chih ; Guirguis, Andrew A. ; Kats, Lev M. ; Wong, Emily S. ; Dawson, Sarah-Jane ; Naik, Shalin H. ; Dawson, Mark A.</creatorcontrib><description>All cancers emerge after a period of clonal selection and subsequent clonal expansion. Although the evolutionary principles imparted by genetic intratumour heterogeneity are becoming increasingly clear 1 , little is known about the non-genetic mechanisms that contribute to intratumour heterogeneity and malignant clonal fitness 2 . Here, using single-cell profiling and lineage tracing (SPLINTR)—an expressed barcoding strategy—we trace isogenic clones in three clinically relevant mouse models of acute myeloid leukaemia. We find that malignant clonal dominance is a cell-intrinsic and heritable property that is facilitated by the repression of antigen presentation and increased expression of the secretory leukocyte peptidase inhibitor gene ( Slpi ), which we genetically validate as a regulator of acute myeloid leukaemia. Increased transcriptional heterogeneity is a feature that enables clonal fitness in diverse tissues and immune microenvironments and in the context of clonal competition between genetically distinct clones. Similar to haematopoietic stem cells 3 , leukaemia stem cells (LSCs) display heritable clone-intrinsic properties of high, and low clonal output that contribute to the overall tumour mass. We demonstrate that LSC clonal output dictates sensitivity to chemotherapy and, although high- and low-output clones adapt differently to therapeutic pressure, they coordinately emerge from minimal residual disease with increased expression of the LSC program. Together, these data provide fundamental insights into the non-genetic transcriptional processes that underpin malignant clonal fitness and may inform future therapeutic strategies. Non-genetic malignant clonal dominance is a cell-intrinsic and heritable property that underpins clonal output and response to therapy in cancer. </description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-021-04206-7</identifier><identifier>PMID: 34880496</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/106 ; 13/109 ; 13/31 ; 38/22 ; 38/35 ; 38/39 ; 38/77 ; 45/23 ; 45/29 ; 631/337/2019 ; 631/67/1990/283 ; 631/67/2329 ; 631/67/71 ; 64/60 ; Acute myeloid leukemia ; Animal models ; Animals ; Antigen presentation ; Antigens ; Cancer ; Cell Competition - drug effects ; Cell Line ; Cell Lineage - drug effects ; Chemotherapy ; Clonal selection ; Clone Cells - drug effects ; Clone Cells - metabolism ; Clone Cells - pathology ; Cloning ; Competition ; Female ; Fitness ; Gene expression ; Genotype &amp; phenotype ; Hematopoietic stem cells ; Heterogeneity ; Humanities and Social Sciences ; Humans ; Influence ; Leukemia ; Leukemia, Myeloid, Acute - drug therapy ; Leukemia, Myeloid, Acute - genetics ; Leukemia, Myeloid, Acute - pathology ; Leukocytes ; Mice ; Mice, Inbred C57BL ; Microenvironments ; Minimal residual disease ; multidisciplinary ; Mutation ; Peptidase ; Peptidases ; Reproductive fitness ; Science ; Science (multidisciplinary) ; Secretory Leukocyte Peptidase Inhibitor - metabolism ; Single-Cell Analysis ; Stem cell transplantation ; Stem cells ; Transcription ; Transplants &amp; implants ; Tumors</subject><ispartof>Nature (London), 2022-01, Vol.601 (7891), p.125-131</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Jan 6, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-62abef1cf3a7b33d608130fa9135debf59e18c9e4ae5e4eab88fc9513d4707403</citedby><cites>FETCH-LOGICAL-c441t-62abef1cf3a7b33d608130fa9135debf59e18c9e4ae5e4eab88fc9513d4707403</cites><orcidid>0000-0001-5843-7836 ; 0000-0002-9504-3497 ; 0000-0002-7814-4851 ; 0000-0003-0315-2942 ; 0000-0003-3134-0596 ; 0000-0001-8742-8138 ; 0000-0003-2177-5406 ; 0000-0003-0299-3301 ; 0000-0002-5464-5029 ; 0000-0002-8276-0374</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-021-04206-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-021-04206-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34880496$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fennell, Katie A.</creatorcontrib><creatorcontrib>Vassiliadis, Dane</creatorcontrib><creatorcontrib>Lam, Enid Y. N.</creatorcontrib><creatorcontrib>Martelotto, Luciano G.</creatorcontrib><creatorcontrib>Balic, Jesse J.</creatorcontrib><creatorcontrib>Hollizeck, Sebastian</creatorcontrib><creatorcontrib>Weber, Tom S.</creatorcontrib><creatorcontrib>Semple, Timothy</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Miles, Denise C.</creatorcontrib><creatorcontrib>MacPherson, Laura</creatorcontrib><creatorcontrib>Chan, Yih-Chih</creatorcontrib><creatorcontrib>Guirguis, Andrew A.</creatorcontrib><creatorcontrib>Kats, Lev M.</creatorcontrib><creatorcontrib>Wong, Emily S.</creatorcontrib><creatorcontrib>Dawson, Sarah-Jane</creatorcontrib><creatorcontrib>Naik, Shalin H.</creatorcontrib><creatorcontrib>Dawson, Mark A.</creatorcontrib><title>Non-genetic determinants of malignant clonal fitness at single-cell resolution</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>All cancers emerge after a period of clonal selection and subsequent clonal expansion. Although the evolutionary principles imparted by genetic intratumour heterogeneity are becoming increasingly clear 1 , little is known about the non-genetic mechanisms that contribute to intratumour heterogeneity and malignant clonal fitness 2 . Here, using single-cell profiling and lineage tracing (SPLINTR)—an expressed barcoding strategy—we trace isogenic clones in three clinically relevant mouse models of acute myeloid leukaemia. We find that malignant clonal dominance is a cell-intrinsic and heritable property that is facilitated by the repression of antigen presentation and increased expression of the secretory leukocyte peptidase inhibitor gene ( Slpi ), which we genetically validate as a regulator of acute myeloid leukaemia. Increased transcriptional heterogeneity is a feature that enables clonal fitness in diverse tissues and immune microenvironments and in the context of clonal competition between genetically distinct clones. Similar to haematopoietic stem cells 3 , leukaemia stem cells (LSCs) display heritable clone-intrinsic properties of high, and low clonal output that contribute to the overall tumour mass. We demonstrate that LSC clonal output dictates sensitivity to chemotherapy and, although high- and low-output clones adapt differently to therapeutic pressure, they coordinately emerge from minimal residual disease with increased expression of the LSC program. Together, these data provide fundamental insights into the non-genetic transcriptional processes that underpin malignant clonal fitness and may inform future therapeutic strategies. Non-genetic malignant clonal dominance is a cell-intrinsic and heritable property that underpins clonal output and response to therapy in cancer. </description><subject>13/106</subject><subject>13/109</subject><subject>13/31</subject><subject>38/22</subject><subject>38/35</subject><subject>38/39</subject><subject>38/77</subject><subject>45/23</subject><subject>45/29</subject><subject>631/337/2019</subject><subject>631/67/1990/283</subject><subject>631/67/2329</subject><subject>631/67/71</subject><subject>64/60</subject><subject>Acute myeloid leukemia</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antigen presentation</subject><subject>Antigens</subject><subject>Cancer</subject><subject>Cell Competition - drug effects</subject><subject>Cell Line</subject><subject>Cell Lineage - drug effects</subject><subject>Chemotherapy</subject><subject>Clonal selection</subject><subject>Clone Cells - drug effects</subject><subject>Clone Cells - metabolism</subject><subject>Clone Cells - pathology</subject><subject>Cloning</subject><subject>Competition</subject><subject>Female</subject><subject>Fitness</subject><subject>Gene expression</subject><subject>Genotype &amp; phenotype</subject><subject>Hematopoietic stem cells</subject><subject>Heterogeneity</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Influence</subject><subject>Leukemia</subject><subject>Leukemia, Myeloid, Acute - drug therapy</subject><subject>Leukemia, Myeloid, Acute - genetics</subject><subject>Leukemia, Myeloid, Acute - pathology</subject><subject>Leukocytes</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microenvironments</subject><subject>Minimal residual disease</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Peptidase</subject><subject>Peptidases</subject><subject>Reproductive fitness</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Secretory Leukocyte Peptidase Inhibitor - metabolism</subject><subject>Single-Cell Analysis</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Transcription</subject><subject>Transplants &amp; implants</subject><subject>Tumors</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kMtKxDAUhoMoOl5ewIUU3LiJnlyapEsRbzDoRtchbU-GSpto0i58ezuOF3Dh6hDO9_9JPkKOGZwzEOYiS1YaRYEzCpKDonqLLJjUikpl9DZZAHBDwQi1R_ZzfgGAkmm5S_aENAZkpRbk4SEGusKAY9cULY6Yhi64MOYi-mJwfbdan4qmj8H1he_GgDkXbixyF1Y90gb7vkiYYz-NXQyHZMe7PuPR1zwgzzfXT1d3dPl4e391uaSNlGykirsaPWu8cLoWolVgmADvKibKFmtfVshMU6F0WKJEVxvjm6pkopUatARxQM42va8pvk2YRzt0ef0WFzBO2fK5sRRccjWjp3_Qlzil-TdrimnNmeZypviGalLMOaG3r6kbXHq3DOzatt3YtrNt-2nb6jl08lU91QO2P5FvvTMgNkCeV2GF6ffuf2o_ACOyipk</recordid><startdate>20220106</startdate><enddate>20220106</enddate><creator>Fennell, Katie A.</creator><creator>Vassiliadis, Dane</creator><creator>Lam, Enid Y. N.</creator><creator>Martelotto, Luciano G.</creator><creator>Balic, Jesse J.</creator><creator>Hollizeck, Sebastian</creator><creator>Weber, Tom S.</creator><creator>Semple, Timothy</creator><creator>Wang, Qing</creator><creator>Miles, Denise C.</creator><creator>MacPherson, Laura</creator><creator>Chan, Yih-Chih</creator><creator>Guirguis, Andrew A.</creator><creator>Kats, Lev M.</creator><creator>Wong, Emily S.</creator><creator>Dawson, Sarah-Jane</creator><creator>Naik, Shalin H.</creator><creator>Dawson, Mark A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5843-7836</orcidid><orcidid>https://orcid.org/0000-0002-9504-3497</orcidid><orcidid>https://orcid.org/0000-0002-7814-4851</orcidid><orcidid>https://orcid.org/0000-0003-0315-2942</orcidid><orcidid>https://orcid.org/0000-0003-3134-0596</orcidid><orcidid>https://orcid.org/0000-0001-8742-8138</orcidid><orcidid>https://orcid.org/0000-0003-2177-5406</orcidid><orcidid>https://orcid.org/0000-0003-0299-3301</orcidid><orcidid>https://orcid.org/0000-0002-5464-5029</orcidid><orcidid>https://orcid.org/0000-0002-8276-0374</orcidid></search><sort><creationdate>20220106</creationdate><title>Non-genetic determinants of malignant clonal fitness at single-cell resolution</title><author>Fennell, Katie A. ; Vassiliadis, Dane ; Lam, Enid Y. N. ; Martelotto, Luciano G. ; Balic, Jesse J. ; Hollizeck, Sebastian ; Weber, Tom S. ; Semple, Timothy ; Wang, Qing ; Miles, Denise C. ; MacPherson, Laura ; Chan, Yih-Chih ; Guirguis, Andrew A. ; Kats, Lev M. ; Wong, Emily S. ; Dawson, Sarah-Jane ; Naik, Shalin H. ; Dawson, Mark A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-62abef1cf3a7b33d608130fa9135debf59e18c9e4ae5e4eab88fc9513d4707403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>13/106</topic><topic>13/109</topic><topic>13/31</topic><topic>38/22</topic><topic>38/35</topic><topic>38/39</topic><topic>38/77</topic><topic>45/23</topic><topic>45/29</topic><topic>631/337/2019</topic><topic>631/67/1990/283</topic><topic>631/67/2329</topic><topic>631/67/71</topic><topic>64/60</topic><topic>Acute myeloid leukemia</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antigen presentation</topic><topic>Antigens</topic><topic>Cancer</topic><topic>Cell Competition - drug effects</topic><topic>Cell Line</topic><topic>Cell Lineage - drug effects</topic><topic>Chemotherapy</topic><topic>Clonal selection</topic><topic>Clone Cells - drug effects</topic><topic>Clone Cells - metabolism</topic><topic>Clone Cells - pathology</topic><topic>Cloning</topic><topic>Competition</topic><topic>Female</topic><topic>Fitness</topic><topic>Gene expression</topic><topic>Genotype &amp; phenotype</topic><topic>Hematopoietic stem cells</topic><topic>Heterogeneity</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Influence</topic><topic>Leukemia</topic><topic>Leukemia, Myeloid, Acute - drug therapy</topic><topic>Leukemia, Myeloid, Acute - genetics</topic><topic>Leukemia, Myeloid, Acute - pathology</topic><topic>Leukocytes</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microenvironments</topic><topic>Minimal residual disease</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Peptidase</topic><topic>Peptidases</topic><topic>Reproductive fitness</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Secretory Leukocyte Peptidase Inhibitor - metabolism</topic><topic>Single-Cell Analysis</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Transcription</topic><topic>Transplants &amp; implants</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fennell, Katie A.</creatorcontrib><creatorcontrib>Vassiliadis, Dane</creatorcontrib><creatorcontrib>Lam, Enid Y. N.</creatorcontrib><creatorcontrib>Martelotto, Luciano G.</creatorcontrib><creatorcontrib>Balic, Jesse J.</creatorcontrib><creatorcontrib>Hollizeck, Sebastian</creatorcontrib><creatorcontrib>Weber, Tom S.</creatorcontrib><creatorcontrib>Semple, Timothy</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Miles, Denise C.</creatorcontrib><creatorcontrib>MacPherson, Laura</creatorcontrib><creatorcontrib>Chan, Yih-Chih</creatorcontrib><creatorcontrib>Guirguis, Andrew A.</creatorcontrib><creatorcontrib>Kats, Lev M.</creatorcontrib><creatorcontrib>Wong, Emily S.</creatorcontrib><creatorcontrib>Dawson, Sarah-Jane</creatorcontrib><creatorcontrib>Naik, Shalin H.</creatorcontrib><creatorcontrib>Dawson, Mark A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fennell, Katie A.</au><au>Vassiliadis, Dane</au><au>Lam, Enid Y. N.</au><au>Martelotto, Luciano G.</au><au>Balic, Jesse J.</au><au>Hollizeck, Sebastian</au><au>Weber, Tom S.</au><au>Semple, Timothy</au><au>Wang, Qing</au><au>Miles, Denise C.</au><au>MacPherson, Laura</au><au>Chan, Yih-Chih</au><au>Guirguis, Andrew A.</au><au>Kats, Lev M.</au><au>Wong, Emily S.</au><au>Dawson, Sarah-Jane</au><au>Naik, Shalin H.</au><au>Dawson, Mark A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-genetic determinants of malignant clonal fitness at single-cell resolution</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2022-01-06</date><risdate>2022</risdate><volume>601</volume><issue>7891</issue><spage>125</spage><epage>131</epage><pages>125-131</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>All cancers emerge after a period of clonal selection and subsequent clonal expansion. Although the evolutionary principles imparted by genetic intratumour heterogeneity are becoming increasingly clear 1 , little is known about the non-genetic mechanisms that contribute to intratumour heterogeneity and malignant clonal fitness 2 . Here, using single-cell profiling and lineage tracing (SPLINTR)—an expressed barcoding strategy—we trace isogenic clones in three clinically relevant mouse models of acute myeloid leukaemia. We find that malignant clonal dominance is a cell-intrinsic and heritable property that is facilitated by the repression of antigen presentation and increased expression of the secretory leukocyte peptidase inhibitor gene ( Slpi ), which we genetically validate as a regulator of acute myeloid leukaemia. Increased transcriptional heterogeneity is a feature that enables clonal fitness in diverse tissues and immune microenvironments and in the context of clonal competition between genetically distinct clones. Similar to haematopoietic stem cells 3 , leukaemia stem cells (LSCs) display heritable clone-intrinsic properties of high, and low clonal output that contribute to the overall tumour mass. We demonstrate that LSC clonal output dictates sensitivity to chemotherapy and, although high- and low-output clones adapt differently to therapeutic pressure, they coordinately emerge from minimal residual disease with increased expression of the LSC program. Together, these data provide fundamental insights into the non-genetic transcriptional processes that underpin malignant clonal fitness and may inform future therapeutic strategies. Non-genetic malignant clonal dominance is a cell-intrinsic and heritable property that underpins clonal output and response to therapy in cancer. </abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34880496</pmid><doi>10.1038/s41586-021-04206-7</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5843-7836</orcidid><orcidid>https://orcid.org/0000-0002-9504-3497</orcidid><orcidid>https://orcid.org/0000-0002-7814-4851</orcidid><orcidid>https://orcid.org/0000-0003-0315-2942</orcidid><orcidid>https://orcid.org/0000-0003-3134-0596</orcidid><orcidid>https://orcid.org/0000-0001-8742-8138</orcidid><orcidid>https://orcid.org/0000-0003-2177-5406</orcidid><orcidid>https://orcid.org/0000-0003-0299-3301</orcidid><orcidid>https://orcid.org/0000-0002-5464-5029</orcidid><orcidid>https://orcid.org/0000-0002-8276-0374</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2022-01, Vol.601 (7891), p.125-131
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_2608532426
source MEDLINE; SpringerLink Journals; Nature
subjects 13/106
13/109
13/31
38/22
38/35
38/39
38/77
45/23
45/29
631/337/2019
631/67/1990/283
631/67/2329
631/67/71
64/60
Acute myeloid leukemia
Animal models
Animals
Antigen presentation
Antigens
Cancer
Cell Competition - drug effects
Cell Line
Cell Lineage - drug effects
Chemotherapy
Clonal selection
Clone Cells - drug effects
Clone Cells - metabolism
Clone Cells - pathology
Cloning
Competition
Female
Fitness
Gene expression
Genotype & phenotype
Hematopoietic stem cells
Heterogeneity
Humanities and Social Sciences
Humans
Influence
Leukemia
Leukemia, Myeloid, Acute - drug therapy
Leukemia, Myeloid, Acute - genetics
Leukemia, Myeloid, Acute - pathology
Leukocytes
Mice
Mice, Inbred C57BL
Microenvironments
Minimal residual disease
multidisciplinary
Mutation
Peptidase
Peptidases
Reproductive fitness
Science
Science (multidisciplinary)
Secretory Leukocyte Peptidase Inhibitor - metabolism
Single-Cell Analysis
Stem cell transplantation
Stem cells
Transcription
Transplants & implants
Tumors
title Non-genetic determinants of malignant clonal fitness at single-cell resolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A24%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-genetic%20determinants%20of%20malignant%20clonal%20fitness%20at%20single-cell%20resolution&rft.jtitle=Nature%20(London)&rft.au=Fennell,%20Katie%20A.&rft.date=2022-01-06&rft.volume=601&rft.issue=7891&rft.spage=125&rft.epage=131&rft.pages=125-131&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-021-04206-7&rft_dat=%3Cproquest_cross%3E2617721724%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617721724&rft_id=info:pmid/34880496&rfr_iscdi=true