Non-genetic determinants of malignant clonal fitness at single-cell resolution
All cancers emerge after a period of clonal selection and subsequent clonal expansion. Although the evolutionary principles imparted by genetic intratumour heterogeneity are becoming increasingly clear 1 , little is known about the non-genetic mechanisms that contribute to intratumour heterogeneity...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2022-01, Vol.601 (7891), p.125-131 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 131 |
---|---|
container_issue | 7891 |
container_start_page | 125 |
container_title | Nature (London) |
container_volume | 601 |
creator | Fennell, Katie A. Vassiliadis, Dane Lam, Enid Y. N. Martelotto, Luciano G. Balic, Jesse J. Hollizeck, Sebastian Weber, Tom S. Semple, Timothy Wang, Qing Miles, Denise C. MacPherson, Laura Chan, Yih-Chih Guirguis, Andrew A. Kats, Lev M. Wong, Emily S. Dawson, Sarah-Jane Naik, Shalin H. Dawson, Mark A. |
description | All cancers emerge after a period of clonal selection and subsequent clonal expansion. Although the evolutionary principles imparted by genetic intratumour heterogeneity are becoming increasingly clear
1
, little is known about the non-genetic mechanisms that contribute to intratumour heterogeneity and malignant clonal fitness
2
. Here, using single-cell profiling and lineage tracing (SPLINTR)—an expressed barcoding strategy—we trace isogenic clones in three clinically relevant mouse models of acute myeloid leukaemia. We find that malignant clonal dominance is a cell-intrinsic and heritable property that is facilitated by the repression of antigen presentation and increased expression of the secretory leukocyte peptidase inhibitor gene (
Slpi
), which we genetically validate as a regulator of acute myeloid leukaemia. Increased transcriptional heterogeneity is a feature that enables clonal fitness in diverse tissues and immune microenvironments and in the context of clonal competition between genetically distinct clones. Similar to haematopoietic stem cells
3
, leukaemia stem cells (LSCs) display heritable clone-intrinsic properties of high, and low clonal output that contribute to the overall tumour mass. We demonstrate that LSC clonal output dictates sensitivity to chemotherapy and, although high- and low-output clones adapt differently to therapeutic pressure, they coordinately emerge from minimal residual disease with increased expression of the LSC program. Together, these data provide fundamental insights into the non-genetic transcriptional processes that underpin malignant clonal fitness and may inform future therapeutic strategies.
Non-genetic malignant clonal dominance is a cell-intrinsic and heritable property that underpins clonal output and response to therapy in cancer. |
doi_str_mv | 10.1038/s41586-021-04206-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2608532426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2617721724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-62abef1cf3a7b33d608130fa9135debf59e18c9e4ae5e4eab88fc9513d4707403</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOl5ewIUU3LiJnlyapEsRbzDoRtchbU-GSpto0i58ezuOF3Dh6hDO9_9JPkKOGZwzEOYiS1YaRYEzCpKDonqLLJjUikpl9DZZAHBDwQi1R_ZzfgGAkmm5S_aENAZkpRbk4SEGusKAY9cULY6Yhi64MOYi-mJwfbdan4qmj8H1he_GgDkXbixyF1Y90gb7vkiYYz-NXQyHZMe7PuPR1zwgzzfXT1d3dPl4e391uaSNlGykirsaPWu8cLoWolVgmADvKibKFmtfVshMU6F0WKJEVxvjm6pkopUatARxQM42va8pvk2YRzt0ef0WFzBO2fK5sRRccjWjp3_Qlzil-TdrimnNmeZypviGalLMOaG3r6kbXHq3DOzatt3YtrNt-2nb6jl08lU91QO2P5FvvTMgNkCeV2GF6ffuf2o_ACOyipk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617721724</pqid></control><display><type>article</type><title>Non-genetic determinants of malignant clonal fitness at single-cell resolution</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Fennell, Katie A. ; Vassiliadis, Dane ; Lam, Enid Y. N. ; Martelotto, Luciano G. ; Balic, Jesse J. ; Hollizeck, Sebastian ; Weber, Tom S. ; Semple, Timothy ; Wang, Qing ; Miles, Denise C. ; MacPherson, Laura ; Chan, Yih-Chih ; Guirguis, Andrew A. ; Kats, Lev M. ; Wong, Emily S. ; Dawson, Sarah-Jane ; Naik, Shalin H. ; Dawson, Mark A.</creator><creatorcontrib>Fennell, Katie A. ; Vassiliadis, Dane ; Lam, Enid Y. N. ; Martelotto, Luciano G. ; Balic, Jesse J. ; Hollizeck, Sebastian ; Weber, Tom S. ; Semple, Timothy ; Wang, Qing ; Miles, Denise C. ; MacPherson, Laura ; Chan, Yih-Chih ; Guirguis, Andrew A. ; Kats, Lev M. ; Wong, Emily S. ; Dawson, Sarah-Jane ; Naik, Shalin H. ; Dawson, Mark A.</creatorcontrib><description>All cancers emerge after a period of clonal selection and subsequent clonal expansion. Although the evolutionary principles imparted by genetic intratumour heterogeneity are becoming increasingly clear
1
, little is known about the non-genetic mechanisms that contribute to intratumour heterogeneity and malignant clonal fitness
2
. Here, using single-cell profiling and lineage tracing (SPLINTR)—an expressed barcoding strategy—we trace isogenic clones in three clinically relevant mouse models of acute myeloid leukaemia. We find that malignant clonal dominance is a cell-intrinsic and heritable property that is facilitated by the repression of antigen presentation and increased expression of the secretory leukocyte peptidase inhibitor gene (
Slpi
), which we genetically validate as a regulator of acute myeloid leukaemia. Increased transcriptional heterogeneity is a feature that enables clonal fitness in diverse tissues and immune microenvironments and in the context of clonal competition between genetically distinct clones. Similar to haematopoietic stem cells
3
, leukaemia stem cells (LSCs) display heritable clone-intrinsic properties of high, and low clonal output that contribute to the overall tumour mass. We demonstrate that LSC clonal output dictates sensitivity to chemotherapy and, although high- and low-output clones adapt differently to therapeutic pressure, they coordinately emerge from minimal residual disease with increased expression of the LSC program. Together, these data provide fundamental insights into the non-genetic transcriptional processes that underpin malignant clonal fitness and may inform future therapeutic strategies.
Non-genetic malignant clonal dominance is a cell-intrinsic and heritable property that underpins clonal output and response to therapy in cancer. </description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-021-04206-7</identifier><identifier>PMID: 34880496</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/106 ; 13/109 ; 13/31 ; 38/22 ; 38/35 ; 38/39 ; 38/77 ; 45/23 ; 45/29 ; 631/337/2019 ; 631/67/1990/283 ; 631/67/2329 ; 631/67/71 ; 64/60 ; Acute myeloid leukemia ; Animal models ; Animals ; Antigen presentation ; Antigens ; Cancer ; Cell Competition - drug effects ; Cell Line ; Cell Lineage - drug effects ; Chemotherapy ; Clonal selection ; Clone Cells - drug effects ; Clone Cells - metabolism ; Clone Cells - pathology ; Cloning ; Competition ; Female ; Fitness ; Gene expression ; Genotype & phenotype ; Hematopoietic stem cells ; Heterogeneity ; Humanities and Social Sciences ; Humans ; Influence ; Leukemia ; Leukemia, Myeloid, Acute - drug therapy ; Leukemia, Myeloid, Acute - genetics ; Leukemia, Myeloid, Acute - pathology ; Leukocytes ; Mice ; Mice, Inbred C57BL ; Microenvironments ; Minimal residual disease ; multidisciplinary ; Mutation ; Peptidase ; Peptidases ; Reproductive fitness ; Science ; Science (multidisciplinary) ; Secretory Leukocyte Peptidase Inhibitor - metabolism ; Single-Cell Analysis ; Stem cell transplantation ; Stem cells ; Transcription ; Transplants & implants ; Tumors</subject><ispartof>Nature (London), 2022-01, Vol.601 (7891), p.125-131</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Jan 6, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-62abef1cf3a7b33d608130fa9135debf59e18c9e4ae5e4eab88fc9513d4707403</citedby><cites>FETCH-LOGICAL-c441t-62abef1cf3a7b33d608130fa9135debf59e18c9e4ae5e4eab88fc9513d4707403</cites><orcidid>0000-0001-5843-7836 ; 0000-0002-9504-3497 ; 0000-0002-7814-4851 ; 0000-0003-0315-2942 ; 0000-0003-3134-0596 ; 0000-0001-8742-8138 ; 0000-0003-2177-5406 ; 0000-0003-0299-3301 ; 0000-0002-5464-5029 ; 0000-0002-8276-0374</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-021-04206-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-021-04206-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34880496$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fennell, Katie A.</creatorcontrib><creatorcontrib>Vassiliadis, Dane</creatorcontrib><creatorcontrib>Lam, Enid Y. N.</creatorcontrib><creatorcontrib>Martelotto, Luciano G.</creatorcontrib><creatorcontrib>Balic, Jesse J.</creatorcontrib><creatorcontrib>Hollizeck, Sebastian</creatorcontrib><creatorcontrib>Weber, Tom S.</creatorcontrib><creatorcontrib>Semple, Timothy</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Miles, Denise C.</creatorcontrib><creatorcontrib>MacPherson, Laura</creatorcontrib><creatorcontrib>Chan, Yih-Chih</creatorcontrib><creatorcontrib>Guirguis, Andrew A.</creatorcontrib><creatorcontrib>Kats, Lev M.</creatorcontrib><creatorcontrib>Wong, Emily S.</creatorcontrib><creatorcontrib>Dawson, Sarah-Jane</creatorcontrib><creatorcontrib>Naik, Shalin H.</creatorcontrib><creatorcontrib>Dawson, Mark A.</creatorcontrib><title>Non-genetic determinants of malignant clonal fitness at single-cell resolution</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>All cancers emerge after a period of clonal selection and subsequent clonal expansion. Although the evolutionary principles imparted by genetic intratumour heterogeneity are becoming increasingly clear
1
, little is known about the non-genetic mechanisms that contribute to intratumour heterogeneity and malignant clonal fitness
2
. Here, using single-cell profiling and lineage tracing (SPLINTR)—an expressed barcoding strategy—we trace isogenic clones in three clinically relevant mouse models of acute myeloid leukaemia. We find that malignant clonal dominance is a cell-intrinsic and heritable property that is facilitated by the repression of antigen presentation and increased expression of the secretory leukocyte peptidase inhibitor gene (
Slpi
), which we genetically validate as a regulator of acute myeloid leukaemia. Increased transcriptional heterogeneity is a feature that enables clonal fitness in diverse tissues and immune microenvironments and in the context of clonal competition between genetically distinct clones. Similar to haematopoietic stem cells
3
, leukaemia stem cells (LSCs) display heritable clone-intrinsic properties of high, and low clonal output that contribute to the overall tumour mass. We demonstrate that LSC clonal output dictates sensitivity to chemotherapy and, although high- and low-output clones adapt differently to therapeutic pressure, they coordinately emerge from minimal residual disease with increased expression of the LSC program. Together, these data provide fundamental insights into the non-genetic transcriptional processes that underpin malignant clonal fitness and may inform future therapeutic strategies.
Non-genetic malignant clonal dominance is a cell-intrinsic and heritable property that underpins clonal output and response to therapy in cancer. </description><subject>13/106</subject><subject>13/109</subject><subject>13/31</subject><subject>38/22</subject><subject>38/35</subject><subject>38/39</subject><subject>38/77</subject><subject>45/23</subject><subject>45/29</subject><subject>631/337/2019</subject><subject>631/67/1990/283</subject><subject>631/67/2329</subject><subject>631/67/71</subject><subject>64/60</subject><subject>Acute myeloid leukemia</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antigen presentation</subject><subject>Antigens</subject><subject>Cancer</subject><subject>Cell Competition - drug effects</subject><subject>Cell Line</subject><subject>Cell Lineage - drug effects</subject><subject>Chemotherapy</subject><subject>Clonal selection</subject><subject>Clone Cells - drug effects</subject><subject>Clone Cells - metabolism</subject><subject>Clone Cells - pathology</subject><subject>Cloning</subject><subject>Competition</subject><subject>Female</subject><subject>Fitness</subject><subject>Gene expression</subject><subject>Genotype & phenotype</subject><subject>Hematopoietic stem cells</subject><subject>Heterogeneity</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Influence</subject><subject>Leukemia</subject><subject>Leukemia, Myeloid, Acute - drug therapy</subject><subject>Leukemia, Myeloid, Acute - genetics</subject><subject>Leukemia, Myeloid, Acute - pathology</subject><subject>Leukocytes</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microenvironments</subject><subject>Minimal residual disease</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Peptidase</subject><subject>Peptidases</subject><subject>Reproductive fitness</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Secretory Leukocyte Peptidase Inhibitor - metabolism</subject><subject>Single-Cell Analysis</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Transcription</subject><subject>Transplants & implants</subject><subject>Tumors</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kMtKxDAUhoMoOl5ewIUU3LiJnlyapEsRbzDoRtchbU-GSpto0i58ezuOF3Dh6hDO9_9JPkKOGZwzEOYiS1YaRYEzCpKDonqLLJjUikpl9DZZAHBDwQi1R_ZzfgGAkmm5S_aENAZkpRbk4SEGusKAY9cULY6Yhi64MOYi-mJwfbdan4qmj8H1he_GgDkXbixyF1Y90gb7vkiYYz-NXQyHZMe7PuPR1zwgzzfXT1d3dPl4e391uaSNlGykirsaPWu8cLoWolVgmADvKibKFmtfVshMU6F0WKJEVxvjm6pkopUatARxQM42va8pvk2YRzt0ef0WFzBO2fK5sRRccjWjp3_Qlzil-TdrimnNmeZypviGalLMOaG3r6kbXHq3DOzatt3YtrNt-2nb6jl08lU91QO2P5FvvTMgNkCeV2GF6ffuf2o_ACOyipk</recordid><startdate>20220106</startdate><enddate>20220106</enddate><creator>Fennell, Katie A.</creator><creator>Vassiliadis, Dane</creator><creator>Lam, Enid Y. N.</creator><creator>Martelotto, Luciano G.</creator><creator>Balic, Jesse J.</creator><creator>Hollizeck, Sebastian</creator><creator>Weber, Tom S.</creator><creator>Semple, Timothy</creator><creator>Wang, Qing</creator><creator>Miles, Denise C.</creator><creator>MacPherson, Laura</creator><creator>Chan, Yih-Chih</creator><creator>Guirguis, Andrew A.</creator><creator>Kats, Lev M.</creator><creator>Wong, Emily S.</creator><creator>Dawson, Sarah-Jane</creator><creator>Naik, Shalin H.</creator><creator>Dawson, Mark A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5843-7836</orcidid><orcidid>https://orcid.org/0000-0002-9504-3497</orcidid><orcidid>https://orcid.org/0000-0002-7814-4851</orcidid><orcidid>https://orcid.org/0000-0003-0315-2942</orcidid><orcidid>https://orcid.org/0000-0003-3134-0596</orcidid><orcidid>https://orcid.org/0000-0001-8742-8138</orcidid><orcidid>https://orcid.org/0000-0003-2177-5406</orcidid><orcidid>https://orcid.org/0000-0003-0299-3301</orcidid><orcidid>https://orcid.org/0000-0002-5464-5029</orcidid><orcidid>https://orcid.org/0000-0002-8276-0374</orcidid></search><sort><creationdate>20220106</creationdate><title>Non-genetic determinants of malignant clonal fitness at single-cell resolution</title><author>Fennell, Katie A. ; Vassiliadis, Dane ; Lam, Enid Y. N. ; Martelotto, Luciano G. ; Balic, Jesse J. ; Hollizeck, Sebastian ; Weber, Tom S. ; Semple, Timothy ; Wang, Qing ; Miles, Denise C. ; MacPherson, Laura ; Chan, Yih-Chih ; Guirguis, Andrew A. ; Kats, Lev M. ; Wong, Emily S. ; Dawson, Sarah-Jane ; Naik, Shalin H. ; Dawson, Mark A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-62abef1cf3a7b33d608130fa9135debf59e18c9e4ae5e4eab88fc9513d4707403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>13/106</topic><topic>13/109</topic><topic>13/31</topic><topic>38/22</topic><topic>38/35</topic><topic>38/39</topic><topic>38/77</topic><topic>45/23</topic><topic>45/29</topic><topic>631/337/2019</topic><topic>631/67/1990/283</topic><topic>631/67/2329</topic><topic>631/67/71</topic><topic>64/60</topic><topic>Acute myeloid leukemia</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antigen presentation</topic><topic>Antigens</topic><topic>Cancer</topic><topic>Cell Competition - drug effects</topic><topic>Cell Line</topic><topic>Cell Lineage - drug effects</topic><topic>Chemotherapy</topic><topic>Clonal selection</topic><topic>Clone Cells - drug effects</topic><topic>Clone Cells - metabolism</topic><topic>Clone Cells - pathology</topic><topic>Cloning</topic><topic>Competition</topic><topic>Female</topic><topic>Fitness</topic><topic>Gene expression</topic><topic>Genotype & phenotype</topic><topic>Hematopoietic stem cells</topic><topic>Heterogeneity</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Influence</topic><topic>Leukemia</topic><topic>Leukemia, Myeloid, Acute - drug therapy</topic><topic>Leukemia, Myeloid, Acute - genetics</topic><topic>Leukemia, Myeloid, Acute - pathology</topic><topic>Leukocytes</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microenvironments</topic><topic>Minimal residual disease</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Peptidase</topic><topic>Peptidases</topic><topic>Reproductive fitness</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Secretory Leukocyte Peptidase Inhibitor - metabolism</topic><topic>Single-Cell Analysis</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Transcription</topic><topic>Transplants & implants</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fennell, Katie A.</creatorcontrib><creatorcontrib>Vassiliadis, Dane</creatorcontrib><creatorcontrib>Lam, Enid Y. N.</creatorcontrib><creatorcontrib>Martelotto, Luciano G.</creatorcontrib><creatorcontrib>Balic, Jesse J.</creatorcontrib><creatorcontrib>Hollizeck, Sebastian</creatorcontrib><creatorcontrib>Weber, Tom S.</creatorcontrib><creatorcontrib>Semple, Timothy</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Miles, Denise C.</creatorcontrib><creatorcontrib>MacPherson, Laura</creatorcontrib><creatorcontrib>Chan, Yih-Chih</creatorcontrib><creatorcontrib>Guirguis, Andrew A.</creatorcontrib><creatorcontrib>Kats, Lev M.</creatorcontrib><creatorcontrib>Wong, Emily S.</creatorcontrib><creatorcontrib>Dawson, Sarah-Jane</creatorcontrib><creatorcontrib>Naik, Shalin H.</creatorcontrib><creatorcontrib>Dawson, Mark A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fennell, Katie A.</au><au>Vassiliadis, Dane</au><au>Lam, Enid Y. N.</au><au>Martelotto, Luciano G.</au><au>Balic, Jesse J.</au><au>Hollizeck, Sebastian</au><au>Weber, Tom S.</au><au>Semple, Timothy</au><au>Wang, Qing</au><au>Miles, Denise C.</au><au>MacPherson, Laura</au><au>Chan, Yih-Chih</au><au>Guirguis, Andrew A.</au><au>Kats, Lev M.</au><au>Wong, Emily S.</au><au>Dawson, Sarah-Jane</au><au>Naik, Shalin H.</au><au>Dawson, Mark A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-genetic determinants of malignant clonal fitness at single-cell resolution</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2022-01-06</date><risdate>2022</risdate><volume>601</volume><issue>7891</issue><spage>125</spage><epage>131</epage><pages>125-131</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>All cancers emerge after a period of clonal selection and subsequent clonal expansion. Although the evolutionary principles imparted by genetic intratumour heterogeneity are becoming increasingly clear
1
, little is known about the non-genetic mechanisms that contribute to intratumour heterogeneity and malignant clonal fitness
2
. Here, using single-cell profiling and lineage tracing (SPLINTR)—an expressed barcoding strategy—we trace isogenic clones in three clinically relevant mouse models of acute myeloid leukaemia. We find that malignant clonal dominance is a cell-intrinsic and heritable property that is facilitated by the repression of antigen presentation and increased expression of the secretory leukocyte peptidase inhibitor gene (
Slpi
), which we genetically validate as a regulator of acute myeloid leukaemia. Increased transcriptional heterogeneity is a feature that enables clonal fitness in diverse tissues and immune microenvironments and in the context of clonal competition between genetically distinct clones. Similar to haematopoietic stem cells
3
, leukaemia stem cells (LSCs) display heritable clone-intrinsic properties of high, and low clonal output that contribute to the overall tumour mass. We demonstrate that LSC clonal output dictates sensitivity to chemotherapy and, although high- and low-output clones adapt differently to therapeutic pressure, they coordinately emerge from minimal residual disease with increased expression of the LSC program. Together, these data provide fundamental insights into the non-genetic transcriptional processes that underpin malignant clonal fitness and may inform future therapeutic strategies.
Non-genetic malignant clonal dominance is a cell-intrinsic and heritable property that underpins clonal output and response to therapy in cancer. </abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34880496</pmid><doi>10.1038/s41586-021-04206-7</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5843-7836</orcidid><orcidid>https://orcid.org/0000-0002-9504-3497</orcidid><orcidid>https://orcid.org/0000-0002-7814-4851</orcidid><orcidid>https://orcid.org/0000-0003-0315-2942</orcidid><orcidid>https://orcid.org/0000-0003-3134-0596</orcidid><orcidid>https://orcid.org/0000-0001-8742-8138</orcidid><orcidid>https://orcid.org/0000-0003-2177-5406</orcidid><orcidid>https://orcid.org/0000-0003-0299-3301</orcidid><orcidid>https://orcid.org/0000-0002-5464-5029</orcidid><orcidid>https://orcid.org/0000-0002-8276-0374</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2022-01, Vol.601 (7891), p.125-131 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2608532426 |
source | MEDLINE; SpringerLink Journals; Nature |
subjects | 13/106 13/109 13/31 38/22 38/35 38/39 38/77 45/23 45/29 631/337/2019 631/67/1990/283 631/67/2329 631/67/71 64/60 Acute myeloid leukemia Animal models Animals Antigen presentation Antigens Cancer Cell Competition - drug effects Cell Line Cell Lineage - drug effects Chemotherapy Clonal selection Clone Cells - drug effects Clone Cells - metabolism Clone Cells - pathology Cloning Competition Female Fitness Gene expression Genotype & phenotype Hematopoietic stem cells Heterogeneity Humanities and Social Sciences Humans Influence Leukemia Leukemia, Myeloid, Acute - drug therapy Leukemia, Myeloid, Acute - genetics Leukemia, Myeloid, Acute - pathology Leukocytes Mice Mice, Inbred C57BL Microenvironments Minimal residual disease multidisciplinary Mutation Peptidase Peptidases Reproductive fitness Science Science (multidisciplinary) Secretory Leukocyte Peptidase Inhibitor - metabolism Single-Cell Analysis Stem cell transplantation Stem cells Transcription Transplants & implants Tumors |
title | Non-genetic determinants of malignant clonal fitness at single-cell resolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A24%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-genetic%20determinants%20of%20malignant%20clonal%20fitness%20at%20single-cell%20resolution&rft.jtitle=Nature%20(London)&rft.au=Fennell,%20Katie%20A.&rft.date=2022-01-06&rft.volume=601&rft.issue=7891&rft.spage=125&rft.epage=131&rft.pages=125-131&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-021-04206-7&rft_dat=%3Cproquest_cross%3E2617721724%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617721724&rft_id=info:pmid/34880496&rfr_iscdi=true |