Cosmochemical constraints on the sulfur content in the Earth's core

The density of the Earth's core (32.5% of the mass of the Earth) is about 8% less than that of pure metallic Fe under similar P, T conditions, requiring the presence of a substantial amount of a light element or light elements in the core ( McQueen and Marsh, 1960, 1966). Sulfur is a good candi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochimica et cosmochimica acta 1996-04, Vol.60 (7), p.1125-1130
Hauptverfasser: Dreibus, Gerlind, Palme, Herbert
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1130
container_issue 7
container_start_page 1125
container_title Geochimica et cosmochimica acta
container_volume 60
creator Dreibus, Gerlind
Palme, Herbert
description The density of the Earth's core (32.5% of the mass of the Earth) is about 8% less than that of pure metallic Fe under similar P, T conditions, requiring the presence of a substantial amount of a light element or light elements in the core ( McQueen and Marsh, 1960, 1966). Sulfur is a good candidate for reducing the density. On the basis of shock wave experiments, Ahrens (1979) estimated that 9–12% S in the core would be sufficient to account for the observed density difference. This corresponds to a S-content of 2.9–3.9% for the bulk Earth. Here we present an estimate of the bulk Earth S-content which is based on the volatility of S in the solar nebula and the general depletion of volatile elements in meteorites and in the Earth. It is suggested that the CI-normalized S-abundance of the bulk Earth is similar to, or even lower than, the CI-normalized abundance of Zn, an element of similar volatility as S in the reducing environment of the solar nebula. Since the Zn content of the mantle of the Earth is well known and since the core is most likely free of Zn, the bulk Earth S-content can be calculated from the Zn-abundance of the mantle. A maximum bulk Earth S-content of 0.56% and a corresponding maximum S-content of the core of 1.7% are estimated. The S-content of the mantle is so low that the contribution to the bulk Earth S-content is negligible. The upper limit of S in the core as derived from cosmochemical constraints is much too low to produce the required decrease in the core's density. At least one other light element is needed.
doi_str_mv 10.1016/0016-7037(96)00028-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26084638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0016703796000282</els_id><sourcerecordid>26084638</sourcerecordid><originalsourceid>FETCH-LOGICAL-a424t-7fa97002631d590342dcb0ff915fe00229ca260482b764b133b5ad42f97eb73c3</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoPPPTkx6GarzbNRZCyfsCCFz2HNJ2wkbbRJBX896asePQyw7x57zHzEDon-IZgUt_iXEqBmbiS9TXGmDYlPUAr0ghayoqxQ7T6oxyjkxjfM0lUFV6htvVx9GYHozN6KIyfYgraTSkWfirSDoo4D3YOyybBlAq3Rzc6pN1lzHCAU3Rk9RDh7Lev0dvD5rV9Krcvj8_t_bbUnPJUCqulyMfVjPSVxIzT3nTYWkkqCxmn0mhaY97QTtS8I4x1le45tVJAJ5hha3Sx9_0I_nOGmNToooFh0BP4OaosbnjNmkzke6IJPsYAVn0EN-rwrQhWS2JqiUMtcSi5DDkxRbPsbi-D_MSXg6CicTAZ6F0Ak1Tv3f8GP0YJcTU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26084638</pqid></control><display><type>article</type><title>Cosmochemical constraints on the sulfur content in the Earth's core</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Dreibus, Gerlind ; Palme, Herbert</creator><creatorcontrib>Dreibus, Gerlind ; Palme, Herbert</creatorcontrib><description>The density of the Earth's core (32.5% of the mass of the Earth) is about 8% less than that of pure metallic Fe under similar P, T conditions, requiring the presence of a substantial amount of a light element or light elements in the core ( McQueen and Marsh, 1960, 1966). Sulfur is a good candidate for reducing the density. On the basis of shock wave experiments, Ahrens (1979) estimated that 9–12% S in the core would be sufficient to account for the observed density difference. This corresponds to a S-content of 2.9–3.9% for the bulk Earth. Here we present an estimate of the bulk Earth S-content which is based on the volatility of S in the solar nebula and the general depletion of volatile elements in meteorites and in the Earth. It is suggested that the CI-normalized S-abundance of the bulk Earth is similar to, or even lower than, the CI-normalized abundance of Zn, an element of similar volatility as S in the reducing environment of the solar nebula. Since the Zn content of the mantle of the Earth is well known and since the core is most likely free of Zn, the bulk Earth S-content can be calculated from the Zn-abundance of the mantle. A maximum bulk Earth S-content of 0.56% and a corresponding maximum S-content of the core of 1.7% are estimated. The S-content of the mantle is so low that the contribution to the bulk Earth S-content is negligible. The upper limit of S in the core as derived from cosmochemical constraints is much too low to produce the required decrease in the core's density. At least one other light element is needed.</description><identifier>ISSN: 0016-7037</identifier><identifier>EISSN: 1872-9533</identifier><identifier>DOI: 10.1016/0016-7037(96)00028-2</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><ispartof>Geochimica et cosmochimica acta, 1996-04, Vol.60 (7), p.1125-1130</ispartof><rights>1996 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a424t-7fa97002631d590342dcb0ff915fe00229ca260482b764b133b5ad42f97eb73c3</citedby><cites>FETCH-LOGICAL-a424t-7fa97002631d590342dcb0ff915fe00229ca260482b764b133b5ad42f97eb73c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0016-7037(96)00028-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Dreibus, Gerlind</creatorcontrib><creatorcontrib>Palme, Herbert</creatorcontrib><title>Cosmochemical constraints on the sulfur content in the Earth's core</title><title>Geochimica et cosmochimica acta</title><description>The density of the Earth's core (32.5% of the mass of the Earth) is about 8% less than that of pure metallic Fe under similar P, T conditions, requiring the presence of a substantial amount of a light element or light elements in the core ( McQueen and Marsh, 1960, 1966). Sulfur is a good candidate for reducing the density. On the basis of shock wave experiments, Ahrens (1979) estimated that 9–12% S in the core would be sufficient to account for the observed density difference. This corresponds to a S-content of 2.9–3.9% for the bulk Earth. Here we present an estimate of the bulk Earth S-content which is based on the volatility of S in the solar nebula and the general depletion of volatile elements in meteorites and in the Earth. It is suggested that the CI-normalized S-abundance of the bulk Earth is similar to, or even lower than, the CI-normalized abundance of Zn, an element of similar volatility as S in the reducing environment of the solar nebula. Since the Zn content of the mantle of the Earth is well known and since the core is most likely free of Zn, the bulk Earth S-content can be calculated from the Zn-abundance of the mantle. A maximum bulk Earth S-content of 0.56% and a corresponding maximum S-content of the core of 1.7% are estimated. The S-content of the mantle is so low that the contribution to the bulk Earth S-content is negligible. The upper limit of S in the core as derived from cosmochemical constraints is much too low to produce the required decrease in the core's density. At least one other light element is needed.</description><issn>0016-7037</issn><issn>1872-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoPPPTkx6GarzbNRZCyfsCCFz2HNJ2wkbbRJBX896asePQyw7x57zHzEDon-IZgUt_iXEqBmbiS9TXGmDYlPUAr0ghayoqxQ7T6oxyjkxjfM0lUFV6htvVx9GYHozN6KIyfYgraTSkWfirSDoo4D3YOyybBlAq3Rzc6pN1lzHCAU3Rk9RDh7Lev0dvD5rV9Krcvj8_t_bbUnPJUCqulyMfVjPSVxIzT3nTYWkkqCxmn0mhaY97QTtS8I4x1le45tVJAJ5hha3Sx9_0I_nOGmNToooFh0BP4OaosbnjNmkzke6IJPsYAVn0EN-rwrQhWS2JqiUMtcSi5DDkxRbPsbi-D_MSXg6CicTAZ6F0Ak1Tv3f8GP0YJcTU</recordid><startdate>19960401</startdate><enddate>19960401</enddate><creator>Dreibus, Gerlind</creator><creator>Palme, Herbert</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19960401</creationdate><title>Cosmochemical constraints on the sulfur content in the Earth's core</title><author>Dreibus, Gerlind ; Palme, Herbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a424t-7fa97002631d590342dcb0ff915fe00229ca260482b764b133b5ad42f97eb73c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dreibus, Gerlind</creatorcontrib><creatorcontrib>Palme, Herbert</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geochimica et cosmochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dreibus, Gerlind</au><au>Palme, Herbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cosmochemical constraints on the sulfur content in the Earth's core</atitle><jtitle>Geochimica et cosmochimica acta</jtitle><date>1996-04-01</date><risdate>1996</risdate><volume>60</volume><issue>7</issue><spage>1125</spage><epage>1130</epage><pages>1125-1130</pages><issn>0016-7037</issn><eissn>1872-9533</eissn><abstract>The density of the Earth's core (32.5% of the mass of the Earth) is about 8% less than that of pure metallic Fe under similar P, T conditions, requiring the presence of a substantial amount of a light element or light elements in the core ( McQueen and Marsh, 1960, 1966). Sulfur is a good candidate for reducing the density. On the basis of shock wave experiments, Ahrens (1979) estimated that 9–12% S in the core would be sufficient to account for the observed density difference. This corresponds to a S-content of 2.9–3.9% for the bulk Earth. Here we present an estimate of the bulk Earth S-content which is based on the volatility of S in the solar nebula and the general depletion of volatile elements in meteorites and in the Earth. It is suggested that the CI-normalized S-abundance of the bulk Earth is similar to, or even lower than, the CI-normalized abundance of Zn, an element of similar volatility as S in the reducing environment of the solar nebula. Since the Zn content of the mantle of the Earth is well known and since the core is most likely free of Zn, the bulk Earth S-content can be calculated from the Zn-abundance of the mantle. A maximum bulk Earth S-content of 0.56% and a corresponding maximum S-content of the core of 1.7% are estimated. The S-content of the mantle is so low that the contribution to the bulk Earth S-content is negligible. The upper limit of S in the core as derived from cosmochemical constraints is much too low to produce the required decrease in the core's density. At least one other light element is needed.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/0016-7037(96)00028-2</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-7037
ispartof Geochimica et cosmochimica acta, 1996-04, Vol.60 (7), p.1125-1130
issn 0016-7037
1872-9533
language eng
recordid cdi_proquest_miscellaneous_26084638
source Elsevier ScienceDirect Journals Complete
title Cosmochemical constraints on the sulfur content in the Earth's core
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A33%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cosmochemical%20constraints%20on%20the%20sulfur%20content%20in%20the%20Earth's%20core&rft.jtitle=Geochimica%20et%20cosmochimica%20acta&rft.au=Dreibus,%20Gerlind&rft.date=1996-04-01&rft.volume=60&rft.issue=7&rft.spage=1125&rft.epage=1130&rft.pages=1125-1130&rft.issn=0016-7037&rft.eissn=1872-9533&rft_id=info:doi/10.1016/0016-7037(96)00028-2&rft_dat=%3Cproquest_cross%3E26084638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26084638&rft_id=info:pmid/&rft_els_id=0016703796000282&rfr_iscdi=true