Manipulating Edge Current in Hexagonal Boron Nitride via Doping and Friction

We map spatially correlated electrical current on the stacking boundaries of pristine and doped hexagonal boron nitride (hBN) to distinguish from its insulating bulk via conductive atomic force microscopy (CAFM). While the pristine edges of hBN show an insulating nature, the O-doped edges reveal a c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2021-12, Vol.15 (12), p.20203-20213
Hauptverfasser: Das, Bikash, Maity, Sujan, Paul, Subrata, Dolui, Kapildeb, Paramanik, Subham, Naskar, Sanjib, Mohanty, Smruti Ranjan, Chakraborty, Supriya, Ghosh, Anudeepa, Palit, Mainak, Watanabe, Kenji, Taniguchi, Takashi, Menon, Krishnakumar S. R, Datta, Subhadeep
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20213
container_issue 12
container_start_page 20203
container_title ACS nano
container_volume 15
creator Das, Bikash
Maity, Sujan
Paul, Subrata
Dolui, Kapildeb
Paramanik, Subham
Naskar, Sanjib
Mohanty, Smruti Ranjan
Chakraborty, Supriya
Ghosh, Anudeepa
Palit, Mainak
Watanabe, Kenji
Taniguchi, Takashi
Menon, Krishnakumar S. R
Datta, Subhadeep
description We map spatially correlated electrical current on the stacking boundaries of pristine and doped hexagonal boron nitride (hBN) to distinguish from its insulating bulk via conductive atomic force microscopy (CAFM). While the pristine edges of hBN show an insulating nature, the O-doped edges reveal a current 2 orders of higher even for bulk layers where the direct transmission through tunnel barrier is implausible. Instead, the nonlinear current–voltage characteristics (I–V) at the edges of O-doped hBN can be explained by trap-assisted lowering of the tunnel barrier by adopting a Poole–Frenkel (PF) model. However, in the stacked heterostructure with multilayer graphene (MLG) on top, the buried edge of pristine hBN shows a signature of electron conduction in the scanning mode which contradicts the first-principle calculation of spatial distribution of local density of states (LDOS) data. Enhancement of friction between the Pt-tip and MLG at the step-edge of the heterostructure while scanning in the contact mode has prompted us to construct a phenomenological model where the localization of opposite surface charges on two conducting plates (MLG and Si substrate) containing a dielectric film (hBN) with negatively charged defects creates an internal electric field opposite to the external electric field due to the applied voltage bias in the CAFM setup. An equivalent circuit with a parallel resistor network based on a vertical conducting channel through the MLG/hBN edge and an in-plane surface carrier transport through MLG can successfully analyze the current maps on pristine/doped hBN and the related heterostructures. These results yield fundamental insight into the emerging field of insulatronics in which defect-induced electron transport along the edge can be manipulated in an 1D–2D synergized insulator.
doi_str_mv 10.1021/acsnano.1c08212
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2608108553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608108553</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-8463522a4fe0aedc37d444196d664d0cd4fe20a63dd7e14cbb113513c2d35c9b3</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMotlbX7iRLQabN12SmS62tFapuFNyFTJKWlGkyJjOi_96Uju5cvQfv3AvvAHCJ0RgjgidSRSedH2OFSoLJERjiKeUZKvn78d-e4wE4i3GLUF6UBT8FA8rKoiQ5H4LVk3S26WrZWreBc70xcNaFYFwLrYNL8yU33ska3vngHXy2bbDawE8r4b1v9hHpNFwEq1rr3Tk4Wcs6mot-jsDbYv46W2arl4fH2e0qk5TSNisZpzkhkq0NkkYrWmjGGJ5yzTnTSOl0IEhyqnVhMFNVhTHNMVVE01xNKzoC14feJviPzsRW7GxUpq6lM76LgnBU4vR3ThM6OaAq-BiDWYsm2J0M3wIjsVcoeoWiV5gSV315V-2M_uN_nSXg5gCkpNj6LiQ_8d-6H6-WfB0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608108553</pqid></control><display><type>article</type><title>Manipulating Edge Current in Hexagonal Boron Nitride via Doping and Friction</title><source>American Chemical Society Journals</source><creator>Das, Bikash ; Maity, Sujan ; Paul, Subrata ; Dolui, Kapildeb ; Paramanik, Subham ; Naskar, Sanjib ; Mohanty, Smruti Ranjan ; Chakraborty, Supriya ; Ghosh, Anudeepa ; Palit, Mainak ; Watanabe, Kenji ; Taniguchi, Takashi ; Menon, Krishnakumar S. R ; Datta, Subhadeep</creator><creatorcontrib>Das, Bikash ; Maity, Sujan ; Paul, Subrata ; Dolui, Kapildeb ; Paramanik, Subham ; Naskar, Sanjib ; Mohanty, Smruti Ranjan ; Chakraborty, Supriya ; Ghosh, Anudeepa ; Palit, Mainak ; Watanabe, Kenji ; Taniguchi, Takashi ; Menon, Krishnakumar S. R ; Datta, Subhadeep</creatorcontrib><description>We map spatially correlated electrical current on the stacking boundaries of pristine and doped hexagonal boron nitride (hBN) to distinguish from its insulating bulk via conductive atomic force microscopy (CAFM). While the pristine edges of hBN show an insulating nature, the O-doped edges reveal a current 2 orders of higher even for bulk layers where the direct transmission through tunnel barrier is implausible. Instead, the nonlinear current–voltage characteristics (I–V) at the edges of O-doped hBN can be explained by trap-assisted lowering of the tunnel barrier by adopting a Poole–Frenkel (PF) model. However, in the stacked heterostructure with multilayer graphene (MLG) on top, the buried edge of pristine hBN shows a signature of electron conduction in the scanning mode which contradicts the first-principle calculation of spatial distribution of local density of states (LDOS) data. Enhancement of friction between the Pt-tip and MLG at the step-edge of the heterostructure while scanning in the contact mode has prompted us to construct a phenomenological model where the localization of opposite surface charges on two conducting plates (MLG and Si substrate) containing a dielectric film (hBN) with negatively charged defects creates an internal electric field opposite to the external electric field due to the applied voltage bias in the CAFM setup. An equivalent circuit with a parallel resistor network based on a vertical conducting channel through the MLG/hBN edge and an in-plane surface carrier transport through MLG can successfully analyze the current maps on pristine/doped hBN and the related heterostructures. These results yield fundamental insight into the emerging field of insulatronics in which defect-induced electron transport along the edge can be manipulated in an 1D–2D synergized insulator.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.1c08212</identifier><identifier>PMID: 34878256</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2021-12, Vol.15 (12), p.20203-20213</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-8463522a4fe0aedc37d444196d664d0cd4fe20a63dd7e14cbb113513c2d35c9b3</citedby><cites>FETCH-LOGICAL-a333t-8463522a4fe0aedc37d444196d664d0cd4fe20a63dd7e14cbb113513c2d35c9b3</cites><orcidid>0000-0003-3701-8119 ; 0000-0002-2611-954X ; 0000-0002-1467-3105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.1c08212$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.1c08212$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34878256$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Das, Bikash</creatorcontrib><creatorcontrib>Maity, Sujan</creatorcontrib><creatorcontrib>Paul, Subrata</creatorcontrib><creatorcontrib>Dolui, Kapildeb</creatorcontrib><creatorcontrib>Paramanik, Subham</creatorcontrib><creatorcontrib>Naskar, Sanjib</creatorcontrib><creatorcontrib>Mohanty, Smruti Ranjan</creatorcontrib><creatorcontrib>Chakraborty, Supriya</creatorcontrib><creatorcontrib>Ghosh, Anudeepa</creatorcontrib><creatorcontrib>Palit, Mainak</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Menon, Krishnakumar S. R</creatorcontrib><creatorcontrib>Datta, Subhadeep</creatorcontrib><title>Manipulating Edge Current in Hexagonal Boron Nitride via Doping and Friction</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>We map spatially correlated electrical current on the stacking boundaries of pristine and doped hexagonal boron nitride (hBN) to distinguish from its insulating bulk via conductive atomic force microscopy (CAFM). While the pristine edges of hBN show an insulating nature, the O-doped edges reveal a current 2 orders of higher even for bulk layers where the direct transmission through tunnel barrier is implausible. Instead, the nonlinear current–voltage characteristics (I–V) at the edges of O-doped hBN can be explained by trap-assisted lowering of the tunnel barrier by adopting a Poole–Frenkel (PF) model. However, in the stacked heterostructure with multilayer graphene (MLG) on top, the buried edge of pristine hBN shows a signature of electron conduction in the scanning mode which contradicts the first-principle calculation of spatial distribution of local density of states (LDOS) data. Enhancement of friction between the Pt-tip and MLG at the step-edge of the heterostructure while scanning in the contact mode has prompted us to construct a phenomenological model where the localization of opposite surface charges on two conducting plates (MLG and Si substrate) containing a dielectric film (hBN) with negatively charged defects creates an internal electric field opposite to the external electric field due to the applied voltage bias in the CAFM setup. An equivalent circuit with a parallel resistor network based on a vertical conducting channel through the MLG/hBN edge and an in-plane surface carrier transport through MLG can successfully analyze the current maps on pristine/doped hBN and the related heterostructures. These results yield fundamental insight into the emerging field of insulatronics in which defect-induced electron transport along the edge can be manipulated in an 1D–2D synergized insulator.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEURYMotlbX7iRLQabN12SmS62tFapuFNyFTJKWlGkyJjOi_96Uju5cvQfv3AvvAHCJ0RgjgidSRSedH2OFSoLJERjiKeUZKvn78d-e4wE4i3GLUF6UBT8FA8rKoiQ5H4LVk3S26WrZWreBc70xcNaFYFwLrYNL8yU33ska3vngHXy2bbDawE8r4b1v9hHpNFwEq1rr3Tk4Wcs6mot-jsDbYv46W2arl4fH2e0qk5TSNisZpzkhkq0NkkYrWmjGGJ5yzTnTSOl0IEhyqnVhMFNVhTHNMVVE01xNKzoC14feJviPzsRW7GxUpq6lM76LgnBU4vR3ThM6OaAq-BiDWYsm2J0M3wIjsVcoeoWiV5gSV315V-2M_uN_nSXg5gCkpNj6LiQ_8d-6H6-WfB0</recordid><startdate>20211228</startdate><enddate>20211228</enddate><creator>Das, Bikash</creator><creator>Maity, Sujan</creator><creator>Paul, Subrata</creator><creator>Dolui, Kapildeb</creator><creator>Paramanik, Subham</creator><creator>Naskar, Sanjib</creator><creator>Mohanty, Smruti Ranjan</creator><creator>Chakraborty, Supriya</creator><creator>Ghosh, Anudeepa</creator><creator>Palit, Mainak</creator><creator>Watanabe, Kenji</creator><creator>Taniguchi, Takashi</creator><creator>Menon, Krishnakumar S. R</creator><creator>Datta, Subhadeep</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-2611-954X</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid></search><sort><creationdate>20211228</creationdate><title>Manipulating Edge Current in Hexagonal Boron Nitride via Doping and Friction</title><author>Das, Bikash ; Maity, Sujan ; Paul, Subrata ; Dolui, Kapildeb ; Paramanik, Subham ; Naskar, Sanjib ; Mohanty, Smruti Ranjan ; Chakraborty, Supriya ; Ghosh, Anudeepa ; Palit, Mainak ; Watanabe, Kenji ; Taniguchi, Takashi ; Menon, Krishnakumar S. R ; Datta, Subhadeep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-8463522a4fe0aedc37d444196d664d0cd4fe20a63dd7e14cbb113513c2d35c9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Bikash</creatorcontrib><creatorcontrib>Maity, Sujan</creatorcontrib><creatorcontrib>Paul, Subrata</creatorcontrib><creatorcontrib>Dolui, Kapildeb</creatorcontrib><creatorcontrib>Paramanik, Subham</creatorcontrib><creatorcontrib>Naskar, Sanjib</creatorcontrib><creatorcontrib>Mohanty, Smruti Ranjan</creatorcontrib><creatorcontrib>Chakraborty, Supriya</creatorcontrib><creatorcontrib>Ghosh, Anudeepa</creatorcontrib><creatorcontrib>Palit, Mainak</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Menon, Krishnakumar S. R</creatorcontrib><creatorcontrib>Datta, Subhadeep</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Bikash</au><au>Maity, Sujan</au><au>Paul, Subrata</au><au>Dolui, Kapildeb</au><au>Paramanik, Subham</au><au>Naskar, Sanjib</au><au>Mohanty, Smruti Ranjan</au><au>Chakraborty, Supriya</au><au>Ghosh, Anudeepa</au><au>Palit, Mainak</au><au>Watanabe, Kenji</au><au>Taniguchi, Takashi</au><au>Menon, Krishnakumar S. R</au><au>Datta, Subhadeep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manipulating Edge Current in Hexagonal Boron Nitride via Doping and Friction</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2021-12-28</date><risdate>2021</risdate><volume>15</volume><issue>12</issue><spage>20203</spage><epage>20213</epage><pages>20203-20213</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>We map spatially correlated electrical current on the stacking boundaries of pristine and doped hexagonal boron nitride (hBN) to distinguish from its insulating bulk via conductive atomic force microscopy (CAFM). While the pristine edges of hBN show an insulating nature, the O-doped edges reveal a current 2 orders of higher even for bulk layers where the direct transmission through tunnel barrier is implausible. Instead, the nonlinear current–voltage characteristics (I–V) at the edges of O-doped hBN can be explained by trap-assisted lowering of the tunnel barrier by adopting a Poole–Frenkel (PF) model. However, in the stacked heterostructure with multilayer graphene (MLG) on top, the buried edge of pristine hBN shows a signature of electron conduction in the scanning mode which contradicts the first-principle calculation of spatial distribution of local density of states (LDOS) data. Enhancement of friction between the Pt-tip and MLG at the step-edge of the heterostructure while scanning in the contact mode has prompted us to construct a phenomenological model where the localization of opposite surface charges on two conducting plates (MLG and Si substrate) containing a dielectric film (hBN) with negatively charged defects creates an internal electric field opposite to the external electric field due to the applied voltage bias in the CAFM setup. An equivalent circuit with a parallel resistor network based on a vertical conducting channel through the MLG/hBN edge and an in-plane surface carrier transport through MLG can successfully analyze the current maps on pristine/doped hBN and the related heterostructures. These results yield fundamental insight into the emerging field of insulatronics in which defect-induced electron transport along the edge can be manipulated in an 1D–2D synergized insulator.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34878256</pmid><doi>10.1021/acsnano.1c08212</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-2611-954X</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2021-12, Vol.15 (12), p.20203-20213
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2608108553
source American Chemical Society Journals
title Manipulating Edge Current in Hexagonal Boron Nitride via Doping and Friction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A12%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manipulating%20Edge%20Current%20in%20Hexagonal%20Boron%20Nitride%20via%20Doping%20and%20Friction&rft.jtitle=ACS%20nano&rft.au=Das,%20Bikash&rft.date=2021-12-28&rft.volume=15&rft.issue=12&rft.spage=20203&rft.epage=20213&rft.pages=20203-20213&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.1c08212&rft_dat=%3Cproquest_cross%3E2608108553%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608108553&rft_id=info:pmid/34878256&rfr_iscdi=true