Wide visible-range activatable fluorescence ZnSe:Eu3+/Mn2+@ZnS quantum dots: local atomic structure order and application as a nanoprobe for bioimaging
The development of QDs-based fluorescent bionanoprobe for cellular imaging fundamentally relies upon the precise knowledge of particle–cell interaction, optical properties of QDs inside and outside of the cell, movement of a particle in and out of the cell, and the fate of particle. We reported engi...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2022-01, Vol.10 (2), p.247-261 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 261 |
---|---|
container_issue | 2 |
container_start_page | 247 |
container_title | Journal of materials chemistry. B, Materials for biology and medicine |
container_volume | 10 |
creator | Khan, Zahid Ullah Uchiyama, Mayara Klimuk Khan, Latif Ullah Araki, Koiti Goto, Hiro Maria Claudia França Cunha Felinto de Souza, Ana Olivia Hermi Felinto de Brito Gidlund, Magnus |
description | The development of QDs-based fluorescent bionanoprobe for cellular imaging fundamentally relies upon the precise knowledge of particle–cell interaction, optical properties of QDs inside and outside of the cell, movement of a particle in and out of the cell, and the fate of particle. We reported engineering and physicochemical characterization of water-dispersible Eu3+/Mn2+ co-doped ZnSe@ZnS core/shell QDs and studied their potential as a bionanoprobe for biomedical applications, evaluating their biocompatibility, fluorescence behaviour by CytoViva dual mode fluorescence imaging, time-dependent uptake, endocytosis and exocytosis in RAW 264.7 macrophages. The oxidation state and local atomic structure of the Eu dopant studied by X-ray absorption fine structure (XAFS) analysis manifested that the Eu3+ ions occupied sites in both ZnSe and ZnS lattices for the core/shell QDs. A novel approach was developed to relieve the excitation constraint of wide bandgap ZnSe by co-incorporation of Eu3+/Mn2+ codopants, enabling the QDs to be excited at a wide UV-visible range. The QDs displayed tunable emission colors by a gradual increase in Eu3+ concentration at a fixed amount of Mn2+, systematically enhancing the Mn2+ emission intensity via energy transfer from the Eu3+ to Mn2+ ion. The ZnSe:Eu3+/Mn2+@ZnS QDs presented high cell viability above 85% and induced no cell activation. The detailed analyses of QDs-treated cells by dual mode fluorescence CytoViva microscopy confirmed the systematic color-tunable fluorescence and its intensity enhances as a function of incubation time. The QDs were internalized by the cells predominantly via macropinocytosis and other lipid raft-mediated endocytic pathways, retaining an efficient amount for 24 h. The unique color tunability and consistent high intensity emission make these QDs useful for developing a multiplex fluorescent bionanoprobe, activatable in wide-visible region. |
doi_str_mv | 10.1039/d1tb01870a |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2608108488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2616872629</sourcerecordid><originalsourceid>FETCH-LOGICAL-p146t-cba05e3ba2f88fbcf2b0c312198d7acdfef4724156238ea0bfb8556c4d8655853</originalsourceid><addsrcrecordid>eNpdkMtKAzEUhgdRsNRufIKAG6GMJpnJTNqVUuoFKi5UFDfl5DIlZZpMc-mr-LoGFBeezbnwcc5__qI4J_iK4Gp2rUgUmPAWw1ExopjhsmWEH__V-OO0mISwxTk4aXhVj4qvd6M0OphgRK9LD3ajEchoDhAhT1DXJ-d1kNpKjT7ti54vUzW9frJ0epNbtE9gY9oh5WKYo95J6BFEtzMSheiTjMlr5LzSHoFVCIahNxKicRZBQIAsWDd4J_Il55EwzuxgY-zmrDjpoA968pvHxdvd8nXxUK6e7x8Xt6tyIHUTSykAM10JoB3nnZAdFVhWhJIZVy1I1emubmlNWEMrrgGLTnDGGlkr3jDGWTUuLn_2ZhH7pENc70z-tu_BapfCmjbZKsxrzjN68Q_duuRtVpepbGdLGzqrvgHUfHls</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616872629</pqid></control><display><type>article</type><title>Wide visible-range activatable fluorescence ZnSe:Eu3+/Mn2+@ZnS quantum dots: local atomic structure order and application as a nanoprobe for bioimaging</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Khan, Zahid Ullah ; Uchiyama, Mayara Klimuk ; Khan, Latif Ullah ; Araki, Koiti ; Goto, Hiro ; Maria Claudia França Cunha Felinto ; de Souza, Ana Olivia ; Hermi Felinto de Brito ; Gidlund, Magnus</creator><creatorcontrib>Khan, Zahid Ullah ; Uchiyama, Mayara Klimuk ; Khan, Latif Ullah ; Araki, Koiti ; Goto, Hiro ; Maria Claudia França Cunha Felinto ; de Souza, Ana Olivia ; Hermi Felinto de Brito ; Gidlund, Magnus</creatorcontrib><description>The development of QDs-based fluorescent bionanoprobe for cellular imaging fundamentally relies upon the precise knowledge of particle–cell interaction, optical properties of QDs inside and outside of the cell, movement of a particle in and out of the cell, and the fate of particle. We reported engineering and physicochemical characterization of water-dispersible Eu3+/Mn2+ co-doped ZnSe@ZnS core/shell QDs and studied their potential as a bionanoprobe for biomedical applications, evaluating their biocompatibility, fluorescence behaviour by CytoViva dual mode fluorescence imaging, time-dependent uptake, endocytosis and exocytosis in RAW 264.7 macrophages. The oxidation state and local atomic structure of the Eu dopant studied by X-ray absorption fine structure (XAFS) analysis manifested that the Eu3+ ions occupied sites in both ZnSe and ZnS lattices for the core/shell QDs. A novel approach was developed to relieve the excitation constraint of wide bandgap ZnSe by co-incorporation of Eu3+/Mn2+ codopants, enabling the QDs to be excited at a wide UV-visible range. The QDs displayed tunable emission colors by a gradual increase in Eu3+ concentration at a fixed amount of Mn2+, systematically enhancing the Mn2+ emission intensity via energy transfer from the Eu3+ to Mn2+ ion. The ZnSe:Eu3+/Mn2+@ZnS QDs presented high cell viability above 85% and induced no cell activation. The detailed analyses of QDs-treated cells by dual mode fluorescence CytoViva microscopy confirmed the systematic color-tunable fluorescence and its intensity enhances as a function of incubation time. The QDs were internalized by the cells predominantly via macropinocytosis and other lipid raft-mediated endocytic pathways, retaining an efficient amount for 24 h. The unique color tunability and consistent high intensity emission make these QDs useful for developing a multiplex fluorescent bionanoprobe, activatable in wide-visible region.</description><identifier>ISSN: 2050-750X</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/d1tb01870a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Atomic structure ; Biocompatibility ; Biomedical materials ; Cell activation ; Cell viability ; Color ; Emission ; Endocytosis ; Energy transfer ; Europium ; Exocytosis ; Fine structure ; Fluorescence ; Lattices ; Lipids ; Macrophages ; Manganese ions ; Medical imaging ; Optical properties ; Oxidation ; Quantum dots ; Time dependence ; Ultrastructure ; Valence ; X ray absorption ; Zinc selenide ; Zinc sulfide</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2022-01, Vol.10 (2), p.247-261</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Khan, Zahid Ullah</creatorcontrib><creatorcontrib>Uchiyama, Mayara Klimuk</creatorcontrib><creatorcontrib>Khan, Latif Ullah</creatorcontrib><creatorcontrib>Araki, Koiti</creatorcontrib><creatorcontrib>Goto, Hiro</creatorcontrib><creatorcontrib>Maria Claudia França Cunha Felinto</creatorcontrib><creatorcontrib>de Souza, Ana Olivia</creatorcontrib><creatorcontrib>Hermi Felinto de Brito</creatorcontrib><creatorcontrib>Gidlund, Magnus</creatorcontrib><title>Wide visible-range activatable fluorescence ZnSe:Eu3+/Mn2+@ZnS quantum dots: local atomic structure order and application as a nanoprobe for bioimaging</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><description>The development of QDs-based fluorescent bionanoprobe for cellular imaging fundamentally relies upon the precise knowledge of particle–cell interaction, optical properties of QDs inside and outside of the cell, movement of a particle in and out of the cell, and the fate of particle. We reported engineering and physicochemical characterization of water-dispersible Eu3+/Mn2+ co-doped ZnSe@ZnS core/shell QDs and studied their potential as a bionanoprobe for biomedical applications, evaluating their biocompatibility, fluorescence behaviour by CytoViva dual mode fluorescence imaging, time-dependent uptake, endocytosis and exocytosis in RAW 264.7 macrophages. The oxidation state and local atomic structure of the Eu dopant studied by X-ray absorption fine structure (XAFS) analysis manifested that the Eu3+ ions occupied sites in both ZnSe and ZnS lattices for the core/shell QDs. A novel approach was developed to relieve the excitation constraint of wide bandgap ZnSe by co-incorporation of Eu3+/Mn2+ codopants, enabling the QDs to be excited at a wide UV-visible range. The QDs displayed tunable emission colors by a gradual increase in Eu3+ concentration at a fixed amount of Mn2+, systematically enhancing the Mn2+ emission intensity via energy transfer from the Eu3+ to Mn2+ ion. The ZnSe:Eu3+/Mn2+@ZnS QDs presented high cell viability above 85% and induced no cell activation. The detailed analyses of QDs-treated cells by dual mode fluorescence CytoViva microscopy confirmed the systematic color-tunable fluorescence and its intensity enhances as a function of incubation time. The QDs were internalized by the cells predominantly via macropinocytosis and other lipid raft-mediated endocytic pathways, retaining an efficient amount for 24 h. The unique color tunability and consistent high intensity emission make these QDs useful for developing a multiplex fluorescent bionanoprobe, activatable in wide-visible region.</description><subject>Atomic structure</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Cell activation</subject><subject>Cell viability</subject><subject>Color</subject><subject>Emission</subject><subject>Endocytosis</subject><subject>Energy transfer</subject><subject>Europium</subject><subject>Exocytosis</subject><subject>Fine structure</subject><subject>Fluorescence</subject><subject>Lattices</subject><subject>Lipids</subject><subject>Macrophages</subject><subject>Manganese ions</subject><subject>Medical imaging</subject><subject>Optical properties</subject><subject>Oxidation</subject><subject>Quantum dots</subject><subject>Time dependence</subject><subject>Ultrastructure</subject><subject>Valence</subject><subject>X ray absorption</subject><subject>Zinc selenide</subject><subject>Zinc sulfide</subject><issn>2050-750X</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkMtKAzEUhgdRsNRufIKAG6GMJpnJTNqVUuoFKi5UFDfl5DIlZZpMc-mr-LoGFBeezbnwcc5__qI4J_iK4Gp2rUgUmPAWw1ExopjhsmWEH__V-OO0mISwxTk4aXhVj4qvd6M0OphgRK9LD3ajEchoDhAhT1DXJ-d1kNpKjT7ti54vUzW9frJ0epNbtE9gY9oh5WKYo95J6BFEtzMSheiTjMlr5LzSHoFVCIahNxKicRZBQIAsWDd4J_Il55EwzuxgY-zmrDjpoA968pvHxdvd8nXxUK6e7x8Xt6tyIHUTSykAM10JoB3nnZAdFVhWhJIZVy1I1emubmlNWEMrrgGLTnDGGlkr3jDGWTUuLn_2ZhH7pENc70z-tu_BapfCmjbZKsxrzjN68Q_duuRtVpepbGdLGzqrvgHUfHls</recordid><startdate>20220105</startdate><enddate>20220105</enddate><creator>Khan, Zahid Ullah</creator><creator>Uchiyama, Mayara Klimuk</creator><creator>Khan, Latif Ullah</creator><creator>Araki, Koiti</creator><creator>Goto, Hiro</creator><creator>Maria Claudia França Cunha Felinto</creator><creator>de Souza, Ana Olivia</creator><creator>Hermi Felinto de Brito</creator><creator>Gidlund, Magnus</creator><general>Royal Society of Chemistry</general><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20220105</creationdate><title>Wide visible-range activatable fluorescence ZnSe:Eu3+/Mn2+@ZnS quantum dots: local atomic structure order and application as a nanoprobe for bioimaging</title><author>Khan, Zahid Ullah ; Uchiyama, Mayara Klimuk ; Khan, Latif Ullah ; Araki, Koiti ; Goto, Hiro ; Maria Claudia França Cunha Felinto ; de Souza, Ana Olivia ; Hermi Felinto de Brito ; Gidlund, Magnus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p146t-cba05e3ba2f88fbcf2b0c312198d7acdfef4724156238ea0bfb8556c4d8655853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic structure</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Cell activation</topic><topic>Cell viability</topic><topic>Color</topic><topic>Emission</topic><topic>Endocytosis</topic><topic>Energy transfer</topic><topic>Europium</topic><topic>Exocytosis</topic><topic>Fine structure</topic><topic>Fluorescence</topic><topic>Lattices</topic><topic>Lipids</topic><topic>Macrophages</topic><topic>Manganese ions</topic><topic>Medical imaging</topic><topic>Optical properties</topic><topic>Oxidation</topic><topic>Quantum dots</topic><topic>Time dependence</topic><topic>Ultrastructure</topic><topic>Valence</topic><topic>X ray absorption</topic><topic>Zinc selenide</topic><topic>Zinc sulfide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Zahid Ullah</creatorcontrib><creatorcontrib>Uchiyama, Mayara Klimuk</creatorcontrib><creatorcontrib>Khan, Latif Ullah</creatorcontrib><creatorcontrib>Araki, Koiti</creatorcontrib><creatorcontrib>Goto, Hiro</creatorcontrib><creatorcontrib>Maria Claudia França Cunha Felinto</creatorcontrib><creatorcontrib>de Souza, Ana Olivia</creatorcontrib><creatorcontrib>Hermi Felinto de Brito</creatorcontrib><creatorcontrib>Gidlund, Magnus</creatorcontrib><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Zahid Ullah</au><au>Uchiyama, Mayara Klimuk</au><au>Khan, Latif Ullah</au><au>Araki, Koiti</au><au>Goto, Hiro</au><au>Maria Claudia França Cunha Felinto</au><au>de Souza, Ana Olivia</au><au>Hermi Felinto de Brito</au><au>Gidlund, Magnus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wide visible-range activatable fluorescence ZnSe:Eu3+/Mn2+@ZnS quantum dots: local atomic structure order and application as a nanoprobe for bioimaging</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><date>2022-01-05</date><risdate>2022</risdate><volume>10</volume><issue>2</issue><spage>247</spage><epage>261</epage><pages>247-261</pages><issn>2050-750X</issn><eissn>2050-7518</eissn><abstract>The development of QDs-based fluorescent bionanoprobe for cellular imaging fundamentally relies upon the precise knowledge of particle–cell interaction, optical properties of QDs inside and outside of the cell, movement of a particle in and out of the cell, and the fate of particle. We reported engineering and physicochemical characterization of water-dispersible Eu3+/Mn2+ co-doped ZnSe@ZnS core/shell QDs and studied their potential as a bionanoprobe for biomedical applications, evaluating their biocompatibility, fluorescence behaviour by CytoViva dual mode fluorescence imaging, time-dependent uptake, endocytosis and exocytosis in RAW 264.7 macrophages. The oxidation state and local atomic structure of the Eu dopant studied by X-ray absorption fine structure (XAFS) analysis manifested that the Eu3+ ions occupied sites in both ZnSe and ZnS lattices for the core/shell QDs. A novel approach was developed to relieve the excitation constraint of wide bandgap ZnSe by co-incorporation of Eu3+/Mn2+ codopants, enabling the QDs to be excited at a wide UV-visible range. The QDs displayed tunable emission colors by a gradual increase in Eu3+ concentration at a fixed amount of Mn2+, systematically enhancing the Mn2+ emission intensity via energy transfer from the Eu3+ to Mn2+ ion. The ZnSe:Eu3+/Mn2+@ZnS QDs presented high cell viability above 85% and induced no cell activation. The detailed analyses of QDs-treated cells by dual mode fluorescence CytoViva microscopy confirmed the systematic color-tunable fluorescence and its intensity enhances as a function of incubation time. The QDs were internalized by the cells predominantly via macropinocytosis and other lipid raft-mediated endocytic pathways, retaining an efficient amount for 24 h. The unique color tunability and consistent high intensity emission make these QDs useful for developing a multiplex fluorescent bionanoprobe, activatable in wide-visible region.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1tb01870a</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-750X |
ispartof | Journal of materials chemistry. B, Materials for biology and medicine, 2022-01, Vol.10 (2), p.247-261 |
issn | 2050-750X 2050-7518 |
language | eng |
recordid | cdi_proquest_miscellaneous_2608108488 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Atomic structure Biocompatibility Biomedical materials Cell activation Cell viability Color Emission Endocytosis Energy transfer Europium Exocytosis Fine structure Fluorescence Lattices Lipids Macrophages Manganese ions Medical imaging Optical properties Oxidation Quantum dots Time dependence Ultrastructure Valence X ray absorption Zinc selenide Zinc sulfide |
title | Wide visible-range activatable fluorescence ZnSe:Eu3+/Mn2+@ZnS quantum dots: local atomic structure order and application as a nanoprobe for bioimaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A50%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wide%20visible-range%20activatable%20fluorescence%20ZnSe:Eu3+/Mn2+@ZnS%20quantum%20dots:%20local%20atomic%20structure%20order%20and%20application%20as%20a%20nanoprobe%20for%20bioimaging&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Khan,%20Zahid%20Ullah&rft.date=2022-01-05&rft.volume=10&rft.issue=2&rft.spage=247&rft.epage=261&rft.pages=247-261&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/d1tb01870a&rft_dat=%3Cproquest%3E2616872629%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616872629&rft_id=info:pmid/&rfr_iscdi=true |