Visualizing the Electron Wind Force in the Elastic Regime
With continued scaling toward higher component densities, integrated circuits (ICs) contain ever greater lengths of nanowire that are vulnerable to failure via electromigration. Previously, plastic electromigration driven by the “electron wind” has been observed, but not the elastic response to the...
Gespeichert in:
Veröffentlicht in: | Nano letters 2021-12, Vol.21 (24), p.10172-10177 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10177 |
---|---|
container_issue | 24 |
container_start_page | 10172 |
container_title | Nano letters |
container_volume | 21 |
creator | Mecklenburg, Matthew Zutter, Brian T Ling, Xin Yi Hubbard, William A Regan, B. C |
description | With continued scaling toward higher component densities, integrated circuits (ICs) contain ever greater lengths of nanowire that are vulnerable to failure via electromigration. Previously, plastic electromigration driven by the “electron wind” has been observed, but not the elastic response to the wind force itself. Here we describe mapping, via electron energy-loss spectroscopy, the density of a lithographically defined aluminum nanowire with sufficient precision to determine both its temperature and its internal pressure. An electrical current density of 108 A/cm2 produces Joule heating, tension upwind, and compression downwind. Surprisingly, the pressure returns to its ambient value well inside the wire, where the current density is still high. This spatial discrepancy points to physics that are not captured by a classical “wind force” model and to new opportunities for optimizing electromigration-resistant IC design. |
doi_str_mv | 10.1021/acs.nanolett.1c02641 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2607298650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2607298650</sourcerecordid><originalsourceid>FETCH-LOGICAL-a460t-f3e008c29afd548d1c0f98a99d898cdf6f94c2e037adf09eaf5233740b38a81d3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EolD4A4SyZJMyfiS1l6hqAakSEuKxtFw_iqvEKXaygK8nVdMuWc1Ic-_M3IPQDYYJBoLvlU6ToEJT2badYA2kZPgEXeCCQl4KQU6PPWcjdJnSBgAELeAcjSjjZcEEv0Diw6dOVf7Xh3XWftlsXlndxiZknz6YbNFEbTMfhpFKrdfZq1372l6hM6eqZK-HOkbvi_nb7Clfvjw-zx6WuWIltLmjFoBrIpQzBeOm_9QJroQwXHBtXOkE08QCnSrjQFjlCkLplMGKcsWxoWN0t9-7jc13Z1Mra5-0rSoVbNMlSUqYEtHngV7K9lIdm5SidXIbfa3ij8Qgd9BkD00eoMkBWm-7HS50q9qao-lAqRfAXrCzb5ouhj7w_zv_AECPe2Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607298650</pqid></control><display><type>article</type><title>Visualizing the Electron Wind Force in the Elastic Regime</title><source>ACS Publications</source><source>MEDLINE</source><creator>Mecklenburg, Matthew ; Zutter, Brian T ; Ling, Xin Yi ; Hubbard, William A ; Regan, B. C</creator><creatorcontrib>Mecklenburg, Matthew ; Zutter, Brian T ; Ling, Xin Yi ; Hubbard, William A ; Regan, B. C</creatorcontrib><description>With continued scaling toward higher component densities, integrated circuits (ICs) contain ever greater lengths of nanowire that are vulnerable to failure via electromigration. Previously, plastic electromigration driven by the “electron wind” has been observed, but not the elastic response to the wind force itself. Here we describe mapping, via electron energy-loss spectroscopy, the density of a lithographically defined aluminum nanowire with sufficient precision to determine both its temperature and its internal pressure. An electrical current density of 108 A/cm2 produces Joule heating, tension upwind, and compression downwind. Surprisingly, the pressure returns to its ambient value well inside the wire, where the current density is still high. This spatial discrepancy points to physics that are not captured by a classical “wind force” model and to new opportunities for optimizing electromigration-resistant IC design.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.1c02641</identifier><identifier>PMID: 34865498</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Electrons</subject><ispartof>Nano letters, 2021-12, Vol.21 (24), p.10172-10177</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a460t-f3e008c29afd548d1c0f98a99d898cdf6f94c2e037adf09eaf5233740b38a81d3</citedby><cites>FETCH-LOGICAL-a460t-f3e008c29afd548d1c0f98a99d898cdf6f94c2e037adf09eaf5233740b38a81d3</cites><orcidid>0000-0003-3923-2688 ; 0000-0002-2924-0820 ; 0000-0003-0581-4153</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.1c02641$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.1c02641$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34865498$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mecklenburg, Matthew</creatorcontrib><creatorcontrib>Zutter, Brian T</creatorcontrib><creatorcontrib>Ling, Xin Yi</creatorcontrib><creatorcontrib>Hubbard, William A</creatorcontrib><creatorcontrib>Regan, B. C</creatorcontrib><title>Visualizing the Electron Wind Force in the Elastic Regime</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>With continued scaling toward higher component densities, integrated circuits (ICs) contain ever greater lengths of nanowire that are vulnerable to failure via electromigration. Previously, plastic electromigration driven by the “electron wind” has been observed, but not the elastic response to the wind force itself. Here we describe mapping, via electron energy-loss spectroscopy, the density of a lithographically defined aluminum nanowire with sufficient precision to determine both its temperature and its internal pressure. An electrical current density of 108 A/cm2 produces Joule heating, tension upwind, and compression downwind. Surprisingly, the pressure returns to its ambient value well inside the wire, where the current density is still high. This spatial discrepancy points to physics that are not captured by a classical “wind force” model and to new opportunities for optimizing electromigration-resistant IC design.</description><subject>Electrons</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EolD4A4SyZJMyfiS1l6hqAakSEuKxtFw_iqvEKXaygK8nVdMuWc1Ic-_M3IPQDYYJBoLvlU6ToEJT2badYA2kZPgEXeCCQl4KQU6PPWcjdJnSBgAELeAcjSjjZcEEv0Diw6dOVf7Xh3XWftlsXlndxiZknz6YbNFEbTMfhpFKrdfZq1372l6hM6eqZK-HOkbvi_nb7Clfvjw-zx6WuWIltLmjFoBrIpQzBeOm_9QJroQwXHBtXOkE08QCnSrjQFjlCkLplMGKcsWxoWN0t9-7jc13Z1Mra5-0rSoVbNMlSUqYEtHngV7K9lIdm5SidXIbfa3ij8Qgd9BkD00eoMkBWm-7HS50q9qao-lAqRfAXrCzb5ouhj7w_zv_AECPe2Y</recordid><startdate>20211222</startdate><enddate>20211222</enddate><creator>Mecklenburg, Matthew</creator><creator>Zutter, Brian T</creator><creator>Ling, Xin Yi</creator><creator>Hubbard, William A</creator><creator>Regan, B. C</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3923-2688</orcidid><orcidid>https://orcid.org/0000-0002-2924-0820</orcidid><orcidid>https://orcid.org/0000-0003-0581-4153</orcidid></search><sort><creationdate>20211222</creationdate><title>Visualizing the Electron Wind Force in the Elastic Regime</title><author>Mecklenburg, Matthew ; Zutter, Brian T ; Ling, Xin Yi ; Hubbard, William A ; Regan, B. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a460t-f3e008c29afd548d1c0f98a99d898cdf6f94c2e037adf09eaf5233740b38a81d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Electrons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mecklenburg, Matthew</creatorcontrib><creatorcontrib>Zutter, Brian T</creatorcontrib><creatorcontrib>Ling, Xin Yi</creatorcontrib><creatorcontrib>Hubbard, William A</creatorcontrib><creatorcontrib>Regan, B. C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mecklenburg, Matthew</au><au>Zutter, Brian T</au><au>Ling, Xin Yi</au><au>Hubbard, William A</au><au>Regan, B. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualizing the Electron Wind Force in the Elastic Regime</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2021-12-22</date><risdate>2021</risdate><volume>21</volume><issue>24</issue><spage>10172</spage><epage>10177</epage><pages>10172-10177</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>With continued scaling toward higher component densities, integrated circuits (ICs) contain ever greater lengths of nanowire that are vulnerable to failure via electromigration. Previously, plastic electromigration driven by the “electron wind” has been observed, but not the elastic response to the wind force itself. Here we describe mapping, via electron energy-loss spectroscopy, the density of a lithographically defined aluminum nanowire with sufficient precision to determine both its temperature and its internal pressure. An electrical current density of 108 A/cm2 produces Joule heating, tension upwind, and compression downwind. Surprisingly, the pressure returns to its ambient value well inside the wire, where the current density is still high. This spatial discrepancy points to physics that are not captured by a classical “wind force” model and to new opportunities for optimizing electromigration-resistant IC design.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34865498</pmid><doi>10.1021/acs.nanolett.1c02641</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3923-2688</orcidid><orcidid>https://orcid.org/0000-0002-2924-0820</orcidid><orcidid>https://orcid.org/0000-0003-0581-4153</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2021-12, Vol.21 (24), p.10172-10177 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_2607298650 |
source | ACS Publications; MEDLINE |
subjects | Electrons |
title | Visualizing the Electron Wind Force in the Elastic Regime |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T07%3A26%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualizing%20the%20Electron%20Wind%20Force%20in%20the%20Elastic%20Regime&rft.jtitle=Nano%20letters&rft.au=Mecklenburg,%20Matthew&rft.date=2021-12-22&rft.volume=21&rft.issue=24&rft.spage=10172&rft.epage=10177&rft.pages=10172-10177&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.1c02641&rft_dat=%3Cproquest_cross%3E2607298650%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607298650&rft_id=info:pmid/34865498&rfr_iscdi=true |