Visualizing the Electron Wind Force in the Elastic Regime

With continued scaling toward higher component densities, integrated circuits (ICs) contain ever greater lengths of nanowire that are vulnerable to failure via electromigration. Previously, plastic electromigration driven by the “electron wind” has been observed, but not the elastic response to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2021-12, Vol.21 (24), p.10172-10177
Hauptverfasser: Mecklenburg, Matthew, Zutter, Brian T, Ling, Xin Yi, Hubbard, William A, Regan, B. C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10177
container_issue 24
container_start_page 10172
container_title Nano letters
container_volume 21
creator Mecklenburg, Matthew
Zutter, Brian T
Ling, Xin Yi
Hubbard, William A
Regan, B. C
description With continued scaling toward higher component densities, integrated circuits (ICs) contain ever greater lengths of nanowire that are vulnerable to failure via electromigration. Previously, plastic electromigration driven by the “electron wind” has been observed, but not the elastic response to the wind force itself. Here we describe mapping, via electron energy-loss spectroscopy, the density of a lithographically defined aluminum nanowire with sufficient precision to determine both its temperature and its internal pressure. An electrical current density of 108 A/cm2 produces Joule heating, tension upwind, and compression downwind. Surprisingly, the pressure returns to its ambient value well inside the wire, where the current density is still high. This spatial discrepancy points to physics that are not captured by a classical “wind force” model and to new opportunities for optimizing electromigration-resistant IC design.
doi_str_mv 10.1021/acs.nanolett.1c02641
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2607298650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2607298650</sourcerecordid><originalsourceid>FETCH-LOGICAL-a460t-f3e008c29afd548d1c0f98a99d898cdf6f94c2e037adf09eaf5233740b38a81d3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EolD4A4SyZJMyfiS1l6hqAakSEuKxtFw_iqvEKXaygK8nVdMuWc1Ic-_M3IPQDYYJBoLvlU6ToEJT2badYA2kZPgEXeCCQl4KQU6PPWcjdJnSBgAELeAcjSjjZcEEv0Diw6dOVf7Xh3XWftlsXlndxiZknz6YbNFEbTMfhpFKrdfZq1372l6hM6eqZK-HOkbvi_nb7Clfvjw-zx6WuWIltLmjFoBrIpQzBeOm_9QJroQwXHBtXOkE08QCnSrjQFjlCkLplMGKcsWxoWN0t9-7jc13Z1Mra5-0rSoVbNMlSUqYEtHngV7K9lIdm5SidXIbfa3ij8Qgd9BkD00eoMkBWm-7HS50q9qao-lAqRfAXrCzb5ouhj7w_zv_AECPe2Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607298650</pqid></control><display><type>article</type><title>Visualizing the Electron Wind Force in the Elastic Regime</title><source>ACS Publications</source><source>MEDLINE</source><creator>Mecklenburg, Matthew ; Zutter, Brian T ; Ling, Xin Yi ; Hubbard, William A ; Regan, B. C</creator><creatorcontrib>Mecklenburg, Matthew ; Zutter, Brian T ; Ling, Xin Yi ; Hubbard, William A ; Regan, B. C</creatorcontrib><description>With continued scaling toward higher component densities, integrated circuits (ICs) contain ever greater lengths of nanowire that are vulnerable to failure via electromigration. Previously, plastic electromigration driven by the “electron wind” has been observed, but not the elastic response to the wind force itself. Here we describe mapping, via electron energy-loss spectroscopy, the density of a lithographically defined aluminum nanowire with sufficient precision to determine both its temperature and its internal pressure. An electrical current density of 108 A/cm2 produces Joule heating, tension upwind, and compression downwind. Surprisingly, the pressure returns to its ambient value well inside the wire, where the current density is still high. This spatial discrepancy points to physics that are not captured by a classical “wind force” model and to new opportunities for optimizing electromigration-resistant IC design.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.1c02641</identifier><identifier>PMID: 34865498</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Electrons</subject><ispartof>Nano letters, 2021-12, Vol.21 (24), p.10172-10177</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a460t-f3e008c29afd548d1c0f98a99d898cdf6f94c2e037adf09eaf5233740b38a81d3</citedby><cites>FETCH-LOGICAL-a460t-f3e008c29afd548d1c0f98a99d898cdf6f94c2e037adf09eaf5233740b38a81d3</cites><orcidid>0000-0003-3923-2688 ; 0000-0002-2924-0820 ; 0000-0003-0581-4153</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.1c02641$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.1c02641$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34865498$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mecklenburg, Matthew</creatorcontrib><creatorcontrib>Zutter, Brian T</creatorcontrib><creatorcontrib>Ling, Xin Yi</creatorcontrib><creatorcontrib>Hubbard, William A</creatorcontrib><creatorcontrib>Regan, B. C</creatorcontrib><title>Visualizing the Electron Wind Force in the Elastic Regime</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>With continued scaling toward higher component densities, integrated circuits (ICs) contain ever greater lengths of nanowire that are vulnerable to failure via electromigration. Previously, plastic electromigration driven by the “electron wind” has been observed, but not the elastic response to the wind force itself. Here we describe mapping, via electron energy-loss spectroscopy, the density of a lithographically defined aluminum nanowire with sufficient precision to determine both its temperature and its internal pressure. An electrical current density of 108 A/cm2 produces Joule heating, tension upwind, and compression downwind. Surprisingly, the pressure returns to its ambient value well inside the wire, where the current density is still high. This spatial discrepancy points to physics that are not captured by a classical “wind force” model and to new opportunities for optimizing electromigration-resistant IC design.</description><subject>Electrons</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EolD4A4SyZJMyfiS1l6hqAakSEuKxtFw_iqvEKXaygK8nVdMuWc1Ic-_M3IPQDYYJBoLvlU6ToEJT2badYA2kZPgEXeCCQl4KQU6PPWcjdJnSBgAELeAcjSjjZcEEv0Diw6dOVf7Xh3XWftlsXlndxiZknz6YbNFEbTMfhpFKrdfZq1372l6hM6eqZK-HOkbvi_nb7Clfvjw-zx6WuWIltLmjFoBrIpQzBeOm_9QJroQwXHBtXOkE08QCnSrjQFjlCkLplMGKcsWxoWN0t9-7jc13Z1Mra5-0rSoVbNMlSUqYEtHngV7K9lIdm5SidXIbfa3ij8Qgd9BkD00eoMkBWm-7HS50q9qao-lAqRfAXrCzb5ouhj7w_zv_AECPe2Y</recordid><startdate>20211222</startdate><enddate>20211222</enddate><creator>Mecklenburg, Matthew</creator><creator>Zutter, Brian T</creator><creator>Ling, Xin Yi</creator><creator>Hubbard, William A</creator><creator>Regan, B. C</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3923-2688</orcidid><orcidid>https://orcid.org/0000-0002-2924-0820</orcidid><orcidid>https://orcid.org/0000-0003-0581-4153</orcidid></search><sort><creationdate>20211222</creationdate><title>Visualizing the Electron Wind Force in the Elastic Regime</title><author>Mecklenburg, Matthew ; Zutter, Brian T ; Ling, Xin Yi ; Hubbard, William A ; Regan, B. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a460t-f3e008c29afd548d1c0f98a99d898cdf6f94c2e037adf09eaf5233740b38a81d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Electrons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mecklenburg, Matthew</creatorcontrib><creatorcontrib>Zutter, Brian T</creatorcontrib><creatorcontrib>Ling, Xin Yi</creatorcontrib><creatorcontrib>Hubbard, William A</creatorcontrib><creatorcontrib>Regan, B. C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mecklenburg, Matthew</au><au>Zutter, Brian T</au><au>Ling, Xin Yi</au><au>Hubbard, William A</au><au>Regan, B. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualizing the Electron Wind Force in the Elastic Regime</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2021-12-22</date><risdate>2021</risdate><volume>21</volume><issue>24</issue><spage>10172</spage><epage>10177</epage><pages>10172-10177</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>With continued scaling toward higher component densities, integrated circuits (ICs) contain ever greater lengths of nanowire that are vulnerable to failure via electromigration. Previously, plastic electromigration driven by the “electron wind” has been observed, but not the elastic response to the wind force itself. Here we describe mapping, via electron energy-loss spectroscopy, the density of a lithographically defined aluminum nanowire with sufficient precision to determine both its temperature and its internal pressure. An electrical current density of 108 A/cm2 produces Joule heating, tension upwind, and compression downwind. Surprisingly, the pressure returns to its ambient value well inside the wire, where the current density is still high. This spatial discrepancy points to physics that are not captured by a classical “wind force” model and to new opportunities for optimizing electromigration-resistant IC design.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34865498</pmid><doi>10.1021/acs.nanolett.1c02641</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3923-2688</orcidid><orcidid>https://orcid.org/0000-0002-2924-0820</orcidid><orcidid>https://orcid.org/0000-0003-0581-4153</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2021-12, Vol.21 (24), p.10172-10177
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_2607298650
source ACS Publications; MEDLINE
subjects Electrons
title Visualizing the Electron Wind Force in the Elastic Regime
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T07%3A26%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualizing%20the%20Electron%20Wind%20Force%20in%20the%20Elastic%20Regime&rft.jtitle=Nano%20letters&rft.au=Mecklenburg,%20Matthew&rft.date=2021-12-22&rft.volume=21&rft.issue=24&rft.spage=10172&rft.epage=10177&rft.pages=10172-10177&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.1c02641&rft_dat=%3Cproquest_cross%3E2607298650%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607298650&rft_id=info:pmid/34865498&rfr_iscdi=true