Scalable Van der Waals Encapsulation by Inorganic Molecular Crystals
Encapsulation is critical for devices to guarantee their stability and reliability. It becomes an even more essential requirement for devices based on 2D materials with atomic thinness and far inferior stability compared to their bulk counterparts. Here a general van der Waals (vdW) encapsulation me...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2022-02, Vol.34 (7), p.e2106041-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 7 |
container_start_page | e2106041 |
container_title | Advanced materials (Weinheim) |
container_volume | 34 |
creator | Liu, Lixin Gong, Penglai Liu, Kailang Nie, Anmin Liu, Zhongyuan Yang, Sanjun Xu, Yongshan Liu, Teng Zhao, Yinghe Huang, Li Li, Huiqiao Zhai, Tianyou |
description | Encapsulation is critical for devices to guarantee their stability and reliability. It becomes an even more essential requirement for devices based on 2D materials with atomic thinness and far inferior stability compared to their bulk counterparts. Here a general van der Waals (vdW) encapsulation method for 2D materials using Sb2O3 layer of inorganic molecular crystal fabricated via thermal evaporation deposition is reported. It is demonstrated that such a scalable encapsulation method not only maintains the intrinsic properties of typical air‐susceptible 2D materials due to their vdW interactions but also remarkably improves their environmental stability. Specifically, the encapsulated black phosphorus (BP) exhibits greatly enhanced structural stability of over 80 days and more sustaining‐electrical properties of 19 days, while the bare BP undergoes degradation within hours. Moreover, the encapsulation layer can be facilely removed by sublimation in vacuum without damaging the underlying materials. This scalable encapsulation method shows a promising pathway to effectively enhance the environmental stability of 2D materials, which may further boost their practical application in novel (opto)electronic devices.
In this work, an effective van der Waals passivation method for 2D materials with inorganic molecular crystal Sb2O3 as the encapsulation layer is developed. The scalable encapsulation method, carried out through a complementary metal‐oxide‐semiconductor‐compatible manufacturing process, opens unprecedented opportunities for 2D materials to be applied in optoelectronic devices toward chip‐level development. |
doi_str_mv | 10.1002/adma.202106041 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2607298643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2629304120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3731-dcb711eb9b0f0f3bc4f9fb299a79f241e9f9e5704e5374158e9377770089d36f3</originalsourceid><addsrcrecordid>eNqFkDtPwzAURi0EoqWwMqJILCwp14848Vi1BSpRMfAaI9uxUao8it0I5d_jqqVILNzlG-65n64OQpcYxhiA3MqilmMCBAMHho_QECcExwxEcoyGIGgSC86yATrzfgUAggM_RQPKMp4Qlg3R7FnLSqrKRG-yiQrjoncpKx_NGy3XvqvkpmybSPXRomndh2xKHS3byuiwcdHU9X4T6HN0YkOYi32O0Ovd_GX6ED8-3S-mk8dY05TiuNAqxdgoocCCpUozK6wiQshUWMKwEVaYJAVmEpoynGRG0DQMQCYKyi0doZtd79q1n53xm7wuvTZVJRvTdj4nHFIiMs5oQK__oKu2c034LlBE0CCLQKDGO0q71ntnbL52ZS1dn2PIt37zrd_84DccXO1rO1Wb4oD_CA2A2AFfZWX6f-ryyWw5-S3_BhYBhMY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629304120</pqid></control><display><type>article</type><title>Scalable Van der Waals Encapsulation by Inorganic Molecular Crystals</title><source>Wiley Online Library All Journals</source><creator>Liu, Lixin ; Gong, Penglai ; Liu, Kailang ; Nie, Anmin ; Liu, Zhongyuan ; Yang, Sanjun ; Xu, Yongshan ; Liu, Teng ; Zhao, Yinghe ; Huang, Li ; Li, Huiqiao ; Zhai, Tianyou</creator><creatorcontrib>Liu, Lixin ; Gong, Penglai ; Liu, Kailang ; Nie, Anmin ; Liu, Zhongyuan ; Yang, Sanjun ; Xu, Yongshan ; Liu, Teng ; Zhao, Yinghe ; Huang, Li ; Li, Huiqiao ; Zhai, Tianyou</creatorcontrib><description>Encapsulation is critical for devices to guarantee their stability and reliability. It becomes an even more essential requirement for devices based on 2D materials with atomic thinness and far inferior stability compared to their bulk counterparts. Here a general van der Waals (vdW) encapsulation method for 2D materials using Sb2O3 layer of inorganic molecular crystal fabricated via thermal evaporation deposition is reported. It is demonstrated that such a scalable encapsulation method not only maintains the intrinsic properties of typical air‐susceptible 2D materials due to their vdW interactions but also remarkably improves their environmental stability. Specifically, the encapsulated black phosphorus (BP) exhibits greatly enhanced structural stability of over 80 days and more sustaining‐electrical properties of 19 days, while the bare BP undergoes degradation within hours. Moreover, the encapsulation layer can be facilely removed by sublimation in vacuum without damaging the underlying materials. This scalable encapsulation method shows a promising pathway to effectively enhance the environmental stability of 2D materials, which may further boost their practical application in novel (opto)electronic devices.
In this work, an effective van der Waals passivation method for 2D materials with inorganic molecular crystal Sb2O3 as the encapsulation layer is developed. The scalable encapsulation method, carried out through a complementary metal‐oxide‐semiconductor‐compatible manufacturing process, opens unprecedented opportunities for 2D materials to be applied in optoelectronic devices toward chip‐level development.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202106041</identifier><identifier>PMID: 34865248</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>2D materials ; decapsulation ; Electrical properties ; Electronic devices ; electronics ; Encapsulation ; inorganic molecular crystals ; Materials science ; Structural stability ; Sublimation ; Two dimensional materials ; van der Waals encapsulation</subject><ispartof>Advanced materials (Weinheim), 2022-02, Vol.34 (7), p.e2106041-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3731-dcb711eb9b0f0f3bc4f9fb299a79f241e9f9e5704e5374158e9377770089d36f3</citedby><cites>FETCH-LOGICAL-c3731-dcb711eb9b0f0f3bc4f9fb299a79f241e9f9e5704e5374158e9377770089d36f3</cites><orcidid>0000-0003-0985-4806</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202106041$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202106041$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34865248$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Lixin</creatorcontrib><creatorcontrib>Gong, Penglai</creatorcontrib><creatorcontrib>Liu, Kailang</creatorcontrib><creatorcontrib>Nie, Anmin</creatorcontrib><creatorcontrib>Liu, Zhongyuan</creatorcontrib><creatorcontrib>Yang, Sanjun</creatorcontrib><creatorcontrib>Xu, Yongshan</creatorcontrib><creatorcontrib>Liu, Teng</creatorcontrib><creatorcontrib>Zhao, Yinghe</creatorcontrib><creatorcontrib>Huang, Li</creatorcontrib><creatorcontrib>Li, Huiqiao</creatorcontrib><creatorcontrib>Zhai, Tianyou</creatorcontrib><title>Scalable Van der Waals Encapsulation by Inorganic Molecular Crystals</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Encapsulation is critical for devices to guarantee their stability and reliability. It becomes an even more essential requirement for devices based on 2D materials with atomic thinness and far inferior stability compared to their bulk counterparts. Here a general van der Waals (vdW) encapsulation method for 2D materials using Sb2O3 layer of inorganic molecular crystal fabricated via thermal evaporation deposition is reported. It is demonstrated that such a scalable encapsulation method not only maintains the intrinsic properties of typical air‐susceptible 2D materials due to their vdW interactions but also remarkably improves their environmental stability. Specifically, the encapsulated black phosphorus (BP) exhibits greatly enhanced structural stability of over 80 days and more sustaining‐electrical properties of 19 days, while the bare BP undergoes degradation within hours. Moreover, the encapsulation layer can be facilely removed by sublimation in vacuum without damaging the underlying materials. This scalable encapsulation method shows a promising pathway to effectively enhance the environmental stability of 2D materials, which may further boost their practical application in novel (opto)electronic devices.
In this work, an effective van der Waals passivation method for 2D materials with inorganic molecular crystal Sb2O3 as the encapsulation layer is developed. The scalable encapsulation method, carried out through a complementary metal‐oxide‐semiconductor‐compatible manufacturing process, opens unprecedented opportunities for 2D materials to be applied in optoelectronic devices toward chip‐level development.</description><subject>2D materials</subject><subject>decapsulation</subject><subject>Electrical properties</subject><subject>Electronic devices</subject><subject>electronics</subject><subject>Encapsulation</subject><subject>inorganic molecular crystals</subject><subject>Materials science</subject><subject>Structural stability</subject><subject>Sublimation</subject><subject>Two dimensional materials</subject><subject>van der Waals encapsulation</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAURi0EoqWwMqJILCwp14848Vi1BSpRMfAaI9uxUao8it0I5d_jqqVILNzlG-65n64OQpcYxhiA3MqilmMCBAMHho_QECcExwxEcoyGIGgSC86yATrzfgUAggM_RQPKMp4Qlg3R7FnLSqrKRG-yiQrjoncpKx_NGy3XvqvkpmybSPXRomndh2xKHS3byuiwcdHU9X4T6HN0YkOYi32O0Ovd_GX6ED8-3S-mk8dY05TiuNAqxdgoocCCpUozK6wiQshUWMKwEVaYJAVmEpoynGRG0DQMQCYKyi0doZtd79q1n53xm7wuvTZVJRvTdj4nHFIiMs5oQK__oKu2c034LlBE0CCLQKDGO0q71ntnbL52ZS1dn2PIt37zrd_84DccXO1rO1Wb4oD_CA2A2AFfZWX6f-ryyWw5-S3_BhYBhMY</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Liu, Lixin</creator><creator>Gong, Penglai</creator><creator>Liu, Kailang</creator><creator>Nie, Anmin</creator><creator>Liu, Zhongyuan</creator><creator>Yang, Sanjun</creator><creator>Xu, Yongshan</creator><creator>Liu, Teng</creator><creator>Zhao, Yinghe</creator><creator>Huang, Li</creator><creator>Li, Huiqiao</creator><creator>Zhai, Tianyou</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0985-4806</orcidid></search><sort><creationdate>20220201</creationdate><title>Scalable Van der Waals Encapsulation by Inorganic Molecular Crystals</title><author>Liu, Lixin ; Gong, Penglai ; Liu, Kailang ; Nie, Anmin ; Liu, Zhongyuan ; Yang, Sanjun ; Xu, Yongshan ; Liu, Teng ; Zhao, Yinghe ; Huang, Li ; Li, Huiqiao ; Zhai, Tianyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3731-dcb711eb9b0f0f3bc4f9fb299a79f241e9f9e5704e5374158e9377770089d36f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>2D materials</topic><topic>decapsulation</topic><topic>Electrical properties</topic><topic>Electronic devices</topic><topic>electronics</topic><topic>Encapsulation</topic><topic>inorganic molecular crystals</topic><topic>Materials science</topic><topic>Structural stability</topic><topic>Sublimation</topic><topic>Two dimensional materials</topic><topic>van der Waals encapsulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Lixin</creatorcontrib><creatorcontrib>Gong, Penglai</creatorcontrib><creatorcontrib>Liu, Kailang</creatorcontrib><creatorcontrib>Nie, Anmin</creatorcontrib><creatorcontrib>Liu, Zhongyuan</creatorcontrib><creatorcontrib>Yang, Sanjun</creatorcontrib><creatorcontrib>Xu, Yongshan</creatorcontrib><creatorcontrib>Liu, Teng</creatorcontrib><creatorcontrib>Zhao, Yinghe</creatorcontrib><creatorcontrib>Huang, Li</creatorcontrib><creatorcontrib>Li, Huiqiao</creatorcontrib><creatorcontrib>Zhai, Tianyou</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Lixin</au><au>Gong, Penglai</au><au>Liu, Kailang</au><au>Nie, Anmin</au><au>Liu, Zhongyuan</au><au>Yang, Sanjun</au><au>Xu, Yongshan</au><au>Liu, Teng</au><au>Zhao, Yinghe</au><au>Huang, Li</au><au>Li, Huiqiao</au><au>Zhai, Tianyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable Van der Waals Encapsulation by Inorganic Molecular Crystals</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>34</volume><issue>7</issue><spage>e2106041</spage><epage>n/a</epage><pages>e2106041-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Encapsulation is critical for devices to guarantee their stability and reliability. It becomes an even more essential requirement for devices based on 2D materials with atomic thinness and far inferior stability compared to their bulk counterparts. Here a general van der Waals (vdW) encapsulation method for 2D materials using Sb2O3 layer of inorganic molecular crystal fabricated via thermal evaporation deposition is reported. It is demonstrated that such a scalable encapsulation method not only maintains the intrinsic properties of typical air‐susceptible 2D materials due to their vdW interactions but also remarkably improves their environmental stability. Specifically, the encapsulated black phosphorus (BP) exhibits greatly enhanced structural stability of over 80 days and more sustaining‐electrical properties of 19 days, while the bare BP undergoes degradation within hours. Moreover, the encapsulation layer can be facilely removed by sublimation in vacuum without damaging the underlying materials. This scalable encapsulation method shows a promising pathway to effectively enhance the environmental stability of 2D materials, which may further boost their practical application in novel (opto)electronic devices.
In this work, an effective van der Waals passivation method for 2D materials with inorganic molecular crystal Sb2O3 as the encapsulation layer is developed. The scalable encapsulation method, carried out through a complementary metal‐oxide‐semiconductor‐compatible manufacturing process, opens unprecedented opportunities for 2D materials to be applied in optoelectronic devices toward chip‐level development.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34865248</pmid><doi>10.1002/adma.202106041</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0985-4806</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2022-02, Vol.34 (7), p.e2106041-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2607298643 |
source | Wiley Online Library All Journals |
subjects | 2D materials decapsulation Electrical properties Electronic devices electronics Encapsulation inorganic molecular crystals Materials science Structural stability Sublimation Two dimensional materials van der Waals encapsulation |
title | Scalable Van der Waals Encapsulation by Inorganic Molecular Crystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A22%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20Van%20der%20Waals%20Encapsulation%20by%20Inorganic%20Molecular%20Crystals&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Liu,%20Lixin&rft.date=2022-02-01&rft.volume=34&rft.issue=7&rft.spage=e2106041&rft.epage=n/a&rft.pages=e2106041-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202106041&rft_dat=%3Cproquest_cross%3E2629304120%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629304120&rft_id=info:pmid/34865248&rfr_iscdi=true |