Automated classification of Tursiops aduncus whistles based on a depth-wise separable convolutional neural network and data augmentation

Whistle classification plays an essential role in studying the habitat and social behaviours of cetaceans. We obtained six categories of sweep whistles of two Tursiops aduncus individual signals using the passive acoustic mornitoring technique over a period of eight months in the Xiamen area. First,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2021-11, Vol.150 (5), p.3861-3873
Hauptverfasser: Li, Lei, Qiao, Gang, Liu, Songzuo, Qing, Xin, Zhang, Huaying, Mazhar, Suleman, Niu, Fuqiang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3873
container_issue 5
container_start_page 3861
container_title The Journal of the Acoustical Society of America
container_volume 150
creator Li, Lei
Qiao, Gang
Liu, Songzuo
Qing, Xin
Zhang, Huaying
Mazhar, Suleman
Niu, Fuqiang
description Whistle classification plays an essential role in studying the habitat and social behaviours of cetaceans. We obtained six categories of sweep whistles of two Tursiops aduncus individual signals using the passive acoustic mornitoring technique over a period of eight months in the Xiamen area. First, we propose a depthwise separable convolutional neural network for whistle classification. The proposed model adopts the depthwise convolution combined with the followed point-by-point convolution instead of the conventional convolution. As a result, it brings a better classification performance in sample sets with relatively independent features between different channels. Meanwhile, it leads to less computational complexity and fewer model parameters. Second, in order to solve the problem of an imbalance in the number of samples under each whistle category, we propose a random series method with five audio augmentation algorithms. The generalization ability of the trained model was improved by using an opening probability for each algorithm and the random selection of each augmentation factor within specific ranges. Finally, we explore the effect of the proposed augmentation method on the performance of our proposed architecture and find that it enhances the accuracy up to 98.53% for the classification of Tursiops aduncus whistles.
doi_str_mv 10.1121/10.0007291
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_miscellaneous_2605601017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2605601017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-7e456b227bbc7eea6a00b3ee1978dd1e67ae44a13e76af92b61406932d3aaf993</originalsourceid><addsrcrecordid>eNp9kM1KxTAQhYMoeP3Z-ARZilJN0ja9XYr4B4IbXZdpMtVob1MziRffwMe21yviQlwdzvDNGeYwdiDFiZRKnk4qhKhULTfYTJZKZPNSFZtsNk1lVtRab7MdoufJlvO8nrGPsxT9AiJabnogcp0zEJ0fuO_4fQrk_EgcbBpMIr58chR7JN4CTRsTBdziGJ-ypSPkhCMEaHvkxg9vvk-rIOj5gCl8SVz68MJhsNxCBA7pcYFD_Lq3x7Y66An3v3WXPVxe3J9fZ7d3VzfnZ7eZyXMdswqLUrdKVW1rKkTQIESbI8q6mlsrUVeARQEyx0pDV6tWy0LoOlc2h8nX-S47XOeOwb8mpNgsHBnsexjQJ2qUFqUWUshqQo_WqAmeKGDXjMEtILw3UjSrulf6XfcEH69hMm790Q_95sMvshlt9x_9R_YnPDSSAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605601017</pqid></control><display><type>article</type><title>Automated classification of Tursiops aduncus whistles based on a depth-wise separable convolutional neural network and data augmentation</title><source>AIP Journals Complete</source><source>Acoustical Society of America (AIP)</source><source>Alma/SFX Local Collection</source><creator>Li, Lei ; Qiao, Gang ; Liu, Songzuo ; Qing, Xin ; Zhang, Huaying ; Mazhar, Suleman ; Niu, Fuqiang</creator><creatorcontrib>Li, Lei ; Qiao, Gang ; Liu, Songzuo ; Qing, Xin ; Zhang, Huaying ; Mazhar, Suleman ; Niu, Fuqiang</creatorcontrib><description>Whistle classification plays an essential role in studying the habitat and social behaviours of cetaceans. We obtained six categories of sweep whistles of two Tursiops aduncus individual signals using the passive acoustic mornitoring technique over a period of eight months in the Xiamen area. First, we propose a depthwise separable convolutional neural network for whistle classification. The proposed model adopts the depthwise convolution combined with the followed point-by-point convolution instead of the conventional convolution. As a result, it brings a better classification performance in sample sets with relatively independent features between different channels. Meanwhile, it leads to less computational complexity and fewer model parameters. Second, in order to solve the problem of an imbalance in the number of samples under each whistle category, we propose a random series method with five audio augmentation algorithms. The generalization ability of the trained model was improved by using an opening probability for each algorithm and the random selection of each augmentation factor within specific ranges. Finally, we explore the effect of the proposed augmentation method on the performance of our proposed architecture and find that it enhances the accuracy up to 98.53% for the classification of Tursiops aduncus whistles.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/10.0007291</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 2021-11, Vol.150 (5), p.3861-3873</ispartof><rights>Acoustical Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-7e456b227bbc7eea6a00b3ee1978dd1e67ae44a13e76af92b61406932d3aaf993</citedby><cites>FETCH-LOGICAL-c336t-7e456b227bbc7eea6a00b3ee1978dd1e67ae44a13e76af92b61406932d3aaf993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/10.0007291$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,780,784,794,1565,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Qiao, Gang</creatorcontrib><creatorcontrib>Liu, Songzuo</creatorcontrib><creatorcontrib>Qing, Xin</creatorcontrib><creatorcontrib>Zhang, Huaying</creatorcontrib><creatorcontrib>Mazhar, Suleman</creatorcontrib><creatorcontrib>Niu, Fuqiang</creatorcontrib><title>Automated classification of Tursiops aduncus whistles based on a depth-wise separable convolutional neural network and data augmentation</title><title>The Journal of the Acoustical Society of America</title><description>Whistle classification plays an essential role in studying the habitat and social behaviours of cetaceans. We obtained six categories of sweep whistles of two Tursiops aduncus individual signals using the passive acoustic mornitoring technique over a period of eight months in the Xiamen area. First, we propose a depthwise separable convolutional neural network for whistle classification. The proposed model adopts the depthwise convolution combined with the followed point-by-point convolution instead of the conventional convolution. As a result, it brings a better classification performance in sample sets with relatively independent features between different channels. Meanwhile, it leads to less computational complexity and fewer model parameters. Second, in order to solve the problem of an imbalance in the number of samples under each whistle category, we propose a random series method with five audio augmentation algorithms. The generalization ability of the trained model was improved by using an opening probability for each algorithm and the random selection of each augmentation factor within specific ranges. Finally, we explore the effect of the proposed augmentation method on the performance of our proposed architecture and find that it enhances the accuracy up to 98.53% for the classification of Tursiops aduncus whistles.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxTAQhYMoeP3Z-ARZilJN0ja9XYr4B4IbXZdpMtVob1MziRffwMe21yviQlwdzvDNGeYwdiDFiZRKnk4qhKhULTfYTJZKZPNSFZtsNk1lVtRab7MdoufJlvO8nrGPsxT9AiJabnogcp0zEJ0fuO_4fQrk_EgcbBpMIr58chR7JN4CTRsTBdziGJ-ypSPkhCMEaHvkxg9vvk-rIOj5gCl8SVz68MJhsNxCBA7pcYFD_Lq3x7Y66An3v3WXPVxe3J9fZ7d3VzfnZ7eZyXMdswqLUrdKVW1rKkTQIESbI8q6mlsrUVeARQEyx0pDV6tWy0LoOlc2h8nX-S47XOeOwb8mpNgsHBnsexjQJ2qUFqUWUshqQo_WqAmeKGDXjMEtILw3UjSrulf6XfcEH69hMm790Q_95sMvshlt9x_9R_YnPDSSAQ</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Li, Lei</creator><creator>Qiao, Gang</creator><creator>Liu, Songzuo</creator><creator>Qing, Xin</creator><creator>Zhang, Huaying</creator><creator>Mazhar, Suleman</creator><creator>Niu, Fuqiang</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202111</creationdate><title>Automated classification of Tursiops aduncus whistles based on a depth-wise separable convolutional neural network and data augmentation</title><author>Li, Lei ; Qiao, Gang ; Liu, Songzuo ; Qing, Xin ; Zhang, Huaying ; Mazhar, Suleman ; Niu, Fuqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-7e456b227bbc7eea6a00b3ee1978dd1e67ae44a13e76af92b61406932d3aaf993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Qiao, Gang</creatorcontrib><creatorcontrib>Liu, Songzuo</creatorcontrib><creatorcontrib>Qing, Xin</creatorcontrib><creatorcontrib>Zhang, Huaying</creatorcontrib><creatorcontrib>Mazhar, Suleman</creatorcontrib><creatorcontrib>Niu, Fuqiang</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Lei</au><au>Qiao, Gang</au><au>Liu, Songzuo</au><au>Qing, Xin</au><au>Zhang, Huaying</au><au>Mazhar, Suleman</au><au>Niu, Fuqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated classification of Tursiops aduncus whistles based on a depth-wise separable convolutional neural network and data augmentation</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>2021-11</date><risdate>2021</risdate><volume>150</volume><issue>5</issue><spage>3861</spage><epage>3873</epage><pages>3861-3873</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>Whistle classification plays an essential role in studying the habitat and social behaviours of cetaceans. We obtained six categories of sweep whistles of two Tursiops aduncus individual signals using the passive acoustic mornitoring technique over a period of eight months in the Xiamen area. First, we propose a depthwise separable convolutional neural network for whistle classification. The proposed model adopts the depthwise convolution combined with the followed point-by-point convolution instead of the conventional convolution. As a result, it brings a better classification performance in sample sets with relatively independent features between different channels. Meanwhile, it leads to less computational complexity and fewer model parameters. Second, in order to solve the problem of an imbalance in the number of samples under each whistle category, we propose a random series method with five audio augmentation algorithms. The generalization ability of the trained model was improved by using an opening probability for each algorithm and the random selection of each augmentation factor within specific ranges. Finally, we explore the effect of the proposed augmentation method on the performance of our proposed architecture and find that it enhances the accuracy up to 98.53% for the classification of Tursiops aduncus whistles.</abstract><doi>10.1121/10.0007291</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2021-11, Vol.150 (5), p.3861-3873
issn 0001-4966
1520-8524
language eng
recordid cdi_proquest_miscellaneous_2605601017
source AIP Journals Complete; Acoustical Society of America (AIP); Alma/SFX Local Collection
title Automated classification of Tursiops aduncus whistles based on a depth-wise separable convolutional neural network and data augmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T15%3A18%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20classification%20of%20Tursiops%20aduncus%20whistles%20based%20on%20a%20depth-wise%20separable%20convolutional%20neural%20network%20and%20data%20augmentation&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Li,%20Lei&rft.date=2021-11&rft.volume=150&rft.issue=5&rft.spage=3861&rft.epage=3873&rft.pages=3861-3873&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/10.0007291&rft_dat=%3Cproquest_scita%3E2605601017%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605601017&rft_id=info:pmid/&rfr_iscdi=true