Automated classification of Tursiops aduncus whistles based on a depth-wise separable convolutional neural network and data augmentation
Whistle classification plays an essential role in studying the habitat and social behaviours of cetaceans. We obtained six categories of sweep whistles of two Tursiops aduncus individual signals using the passive acoustic mornitoring technique over a period of eight months in the Xiamen area. First,...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2021-11, Vol.150 (5), p.3861-3873 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3873 |
---|---|
container_issue | 5 |
container_start_page | 3861 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 150 |
creator | Li, Lei Qiao, Gang Liu, Songzuo Qing, Xin Zhang, Huaying Mazhar, Suleman Niu, Fuqiang |
description | Whistle classification plays an essential role in studying the habitat and social behaviours of cetaceans. We obtained six categories of sweep whistles of two Tursiops aduncus individual signals using the passive acoustic mornitoring technique over a period of eight months in the Xiamen area. First, we propose a depthwise separable convolutional neural network for whistle classification. The proposed model adopts the depthwise convolution combined with the followed point-by-point convolution instead of the conventional convolution. As a result, it brings a better classification performance in sample sets with relatively independent features between different channels. Meanwhile, it leads to less computational complexity and fewer model parameters. Second, in order to solve the problem of an imbalance in the number of samples under each whistle category, we propose a random series method with five audio augmentation algorithms. The generalization ability of the trained model was improved by using an opening probability for each algorithm and the random selection of each augmentation factor within specific ranges. Finally, we explore the effect of the proposed augmentation method on the performance of our proposed architecture and find that it enhances the accuracy up to 98.53% for the classification of Tursiops aduncus whistles. |
doi_str_mv | 10.1121/10.0007291 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_miscellaneous_2605601017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2605601017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-7e456b227bbc7eea6a00b3ee1978dd1e67ae44a13e76af92b61406932d3aaf993</originalsourceid><addsrcrecordid>eNp9kM1KxTAQhYMoeP3Z-ARZilJN0ja9XYr4B4IbXZdpMtVob1MziRffwMe21yviQlwdzvDNGeYwdiDFiZRKnk4qhKhULTfYTJZKZPNSFZtsNk1lVtRab7MdoufJlvO8nrGPsxT9AiJabnogcp0zEJ0fuO_4fQrk_EgcbBpMIr58chR7JN4CTRsTBdziGJ-ypSPkhCMEaHvkxg9vvk-rIOj5gCl8SVz68MJhsNxCBA7pcYFD_Lq3x7Y66An3v3WXPVxe3J9fZ7d3VzfnZ7eZyXMdswqLUrdKVW1rKkTQIESbI8q6mlsrUVeARQEyx0pDV6tWy0LoOlc2h8nX-S47XOeOwb8mpNgsHBnsexjQJ2qUFqUWUshqQo_WqAmeKGDXjMEtILw3UjSrulf6XfcEH69hMm790Q_95sMvshlt9x_9R_YnPDSSAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605601017</pqid></control><display><type>article</type><title>Automated classification of Tursiops aduncus whistles based on a depth-wise separable convolutional neural network and data augmentation</title><source>AIP Journals Complete</source><source>Acoustical Society of America (AIP)</source><source>Alma/SFX Local Collection</source><creator>Li, Lei ; Qiao, Gang ; Liu, Songzuo ; Qing, Xin ; Zhang, Huaying ; Mazhar, Suleman ; Niu, Fuqiang</creator><creatorcontrib>Li, Lei ; Qiao, Gang ; Liu, Songzuo ; Qing, Xin ; Zhang, Huaying ; Mazhar, Suleman ; Niu, Fuqiang</creatorcontrib><description>Whistle classification plays an essential role in studying the habitat and social behaviours of cetaceans. We obtained six categories of sweep whistles of two Tursiops aduncus individual signals using the passive acoustic mornitoring technique over a period of eight months in the Xiamen area. First, we propose a depthwise separable convolutional neural network for whistle classification. The proposed model adopts the depthwise convolution combined with the followed point-by-point convolution instead of the conventional convolution. As a result, it brings a better classification performance in sample sets with relatively independent features between different channels. Meanwhile, it leads to less computational complexity and fewer model parameters. Second, in order to solve the problem of an imbalance in the number of samples under each whistle category, we propose a random series method with five audio augmentation algorithms. The generalization ability of the trained model was improved by using an opening probability for each algorithm and the random selection of each augmentation factor within specific ranges. Finally, we explore the effect of the proposed augmentation method on the performance of our proposed architecture and find that it enhances the accuracy up to 98.53% for the classification of Tursiops aduncus whistles.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/10.0007291</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><ispartof>The Journal of the Acoustical Society of America, 2021-11, Vol.150 (5), p.3861-3873</ispartof><rights>Acoustical Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-7e456b227bbc7eea6a00b3ee1978dd1e67ae44a13e76af92b61406932d3aaf993</citedby><cites>FETCH-LOGICAL-c336t-7e456b227bbc7eea6a00b3ee1978dd1e67ae44a13e76af92b61406932d3aaf993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/10.0007291$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,780,784,794,1565,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Qiao, Gang</creatorcontrib><creatorcontrib>Liu, Songzuo</creatorcontrib><creatorcontrib>Qing, Xin</creatorcontrib><creatorcontrib>Zhang, Huaying</creatorcontrib><creatorcontrib>Mazhar, Suleman</creatorcontrib><creatorcontrib>Niu, Fuqiang</creatorcontrib><title>Automated classification of Tursiops aduncus whistles based on a depth-wise separable convolutional neural network and data augmentation</title><title>The Journal of the Acoustical Society of America</title><description>Whistle classification plays an essential role in studying the habitat and social behaviours of cetaceans. We obtained six categories of sweep whistles of two Tursiops aduncus individual signals using the passive acoustic mornitoring technique over a period of eight months in the Xiamen area. First, we propose a depthwise separable convolutional neural network for whistle classification. The proposed model adopts the depthwise convolution combined with the followed point-by-point convolution instead of the conventional convolution. As a result, it brings a better classification performance in sample sets with relatively independent features between different channels. Meanwhile, it leads to less computational complexity and fewer model parameters. Second, in order to solve the problem of an imbalance in the number of samples under each whistle category, we propose a random series method with five audio augmentation algorithms. The generalization ability of the trained model was improved by using an opening probability for each algorithm and the random selection of each augmentation factor within specific ranges. Finally, we explore the effect of the proposed augmentation method on the performance of our proposed architecture and find that it enhances the accuracy up to 98.53% for the classification of Tursiops aduncus whistles.</description><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxTAQhYMoeP3Z-ARZilJN0ja9XYr4B4IbXZdpMtVob1MziRffwMe21yviQlwdzvDNGeYwdiDFiZRKnk4qhKhULTfYTJZKZPNSFZtsNk1lVtRab7MdoufJlvO8nrGPsxT9AiJabnogcp0zEJ0fuO_4fQrk_EgcbBpMIr58chR7JN4CTRsTBdziGJ-ypSPkhCMEaHvkxg9vvk-rIOj5gCl8SVz68MJhsNxCBA7pcYFD_Lq3x7Y66An3v3WXPVxe3J9fZ7d3VzfnZ7eZyXMdswqLUrdKVW1rKkTQIESbI8q6mlsrUVeARQEyx0pDV6tWy0LoOlc2h8nX-S47XOeOwb8mpNgsHBnsexjQJ2qUFqUWUshqQo_WqAmeKGDXjMEtILw3UjSrulf6XfcEH69hMm790Q_95sMvshlt9x_9R_YnPDSSAQ</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Li, Lei</creator><creator>Qiao, Gang</creator><creator>Liu, Songzuo</creator><creator>Qing, Xin</creator><creator>Zhang, Huaying</creator><creator>Mazhar, Suleman</creator><creator>Niu, Fuqiang</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202111</creationdate><title>Automated classification of Tursiops aduncus whistles based on a depth-wise separable convolutional neural network and data augmentation</title><author>Li, Lei ; Qiao, Gang ; Liu, Songzuo ; Qing, Xin ; Zhang, Huaying ; Mazhar, Suleman ; Niu, Fuqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-7e456b227bbc7eea6a00b3ee1978dd1e67ae44a13e76af92b61406932d3aaf993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Qiao, Gang</creatorcontrib><creatorcontrib>Liu, Songzuo</creatorcontrib><creatorcontrib>Qing, Xin</creatorcontrib><creatorcontrib>Zhang, Huaying</creatorcontrib><creatorcontrib>Mazhar, Suleman</creatorcontrib><creatorcontrib>Niu, Fuqiang</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Lei</au><au>Qiao, Gang</au><au>Liu, Songzuo</au><au>Qing, Xin</au><au>Zhang, Huaying</au><au>Mazhar, Suleman</au><au>Niu, Fuqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated classification of Tursiops aduncus whistles based on a depth-wise separable convolutional neural network and data augmentation</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>2021-11</date><risdate>2021</risdate><volume>150</volume><issue>5</issue><spage>3861</spage><epage>3873</epage><pages>3861-3873</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>Whistle classification plays an essential role in studying the habitat and social behaviours of cetaceans. We obtained six categories of sweep whistles of two Tursiops aduncus individual signals using the passive acoustic mornitoring technique over a period of eight months in the Xiamen area. First, we propose a depthwise separable convolutional neural network for whistle classification. The proposed model adopts the depthwise convolution combined with the followed point-by-point convolution instead of the conventional convolution. As a result, it brings a better classification performance in sample sets with relatively independent features between different channels. Meanwhile, it leads to less computational complexity and fewer model parameters. Second, in order to solve the problem of an imbalance in the number of samples under each whistle category, we propose a random series method with five audio augmentation algorithms. The generalization ability of the trained model was improved by using an opening probability for each algorithm and the random selection of each augmentation factor within specific ranges. Finally, we explore the effect of the proposed augmentation method on the performance of our proposed architecture and find that it enhances the accuracy up to 98.53% for the classification of Tursiops aduncus whistles.</abstract><doi>10.1121/10.0007291</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 2021-11, Vol.150 (5), p.3861-3873 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_proquest_miscellaneous_2605601017 |
source | AIP Journals Complete; Acoustical Society of America (AIP); Alma/SFX Local Collection |
title | Automated classification of Tursiops aduncus whistles based on a depth-wise separable convolutional neural network and data augmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T15%3A18%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20classification%20of%20Tursiops%20aduncus%20whistles%20based%20on%20a%20depth-wise%20separable%20convolutional%20neural%20network%20and%20data%20augmentation&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Li,%20Lei&rft.date=2021-11&rft.volume=150&rft.issue=5&rft.spage=3861&rft.epage=3873&rft.pages=3861-3873&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/10.0007291&rft_dat=%3Cproquest_scita%3E2605601017%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605601017&rft_id=info:pmid/&rfr_iscdi=true |