Fixed-point roundoff error analysis of large feedforward neural networks

Digital implementations of neural nets must consider finite wordlength effects. For large sized nets, it is particularly important to investigate the roundoff errors in order to realize low-cost hardware implementations while satisfying precision constraints. This paper presents output error express...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Choi, H., Burleson, W.P., Phatak, D.S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1950 vol.2
container_issue
container_start_page 1947
container_title
container_volume 2
creator Choi, H.
Burleson, W.P.
Phatak, D.S.
description Digital implementations of neural nets must consider finite wordlength effects. For large sized nets, it is particularly important to investigate the roundoff errors in order to realize low-cost hardware implementations while satisfying precision constraints. This paper presents output error expressions for a large feedforward neural net, which are based on statistical error analysis. Weight quantization errors as well as arithmetic errors due to rounding of multiplier output and sigmoid output are modeled. The results indicate that for equal wordlengths, multiplier roundoff errors exceed weight quantization errors by about an order of magnitude.
doi_str_mv 10.1109/IJCNN.1993.717037
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_26053266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>717037</ieee_id><sourcerecordid>26053266</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-2a59d69c57c083dcf82ecd946ad7fd476d9ff40fcb74224daee8e40e4d53872a3</originalsourceid><addsrcrecordid>eNotkL1OwzAYRS0hJKD0AWDyxJbgv9jxiCJKi6qywByZ-DMyuHGwE5W-fSOVu5zl6AwXoTtKSkqJfty8NrtdSbXmpaKKcHWBboiqCaeCUXaFljl_k3lCVEyra7Re-T-wxRB9P-IUp95G5zCkFBM2vQnH7DOODgeTvgA7AOtiOphkcQ9TMmHGeIjpJ9-iS2dChuU_F-hj9fzerIvt28umedoWnhE-FsxU2krdVaojNbedqxl0VgtprHJWKGm1c4K47lMJxoQ1ADUIAsJWvFbM8AV6OHeHFH8nyGO797mDEEwPccotk6TiTMpZvD-LHgDaIfm9Scf2fAo_AWOZWT0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>26053266</pqid></control><display><type>conference_proceeding</type><title>Fixed-point roundoff error analysis of large feedforward neural networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Choi, H. ; Burleson, W.P. ; Phatak, D.S.</creator><creatorcontrib>Choi, H. ; Burleson, W.P. ; Phatak, D.S.</creatorcontrib><description>Digital implementations of neural nets must consider finite wordlength effects. For large sized nets, it is particularly important to investigate the roundoff errors in order to realize low-cost hardware implementations while satisfying precision constraints. This paper presents output error expressions for a large feedforward neural net, which are based on statistical error analysis. Weight quantization errors as well as arithmetic errors due to rounding of multiplier output and sigmoid output are modeled. The results indicate that for equal wordlengths, multiplier roundoff errors exceed weight quantization errors by about an order of magnitude.</description><identifier>ISBN: 0780314212</identifier><identifier>ISBN: 9780780314214</identifier><identifier>DOI: 10.1109/IJCNN.1993.717037</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aggregates ; Arithmetic ; Error analysis ; Feedforward neural networks ; Hardware ; Multi-layer neural network ; Neural networks ; Nonhomogeneous media ; Quantization ; Roundoff errors</subject><ispartof>International Joint Conference on Neural Networks, Nagoya, 1993, 1993, Vol.2, p.1947-1950 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/717037$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,2058,4050,4051,27924,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/717037$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Choi, H.</creatorcontrib><creatorcontrib>Burleson, W.P.</creatorcontrib><creatorcontrib>Phatak, D.S.</creatorcontrib><title>Fixed-point roundoff error analysis of large feedforward neural networks</title><title>International Joint Conference on Neural Networks, Nagoya, 1993</title><addtitle>IJCNN</addtitle><description>Digital implementations of neural nets must consider finite wordlength effects. For large sized nets, it is particularly important to investigate the roundoff errors in order to realize low-cost hardware implementations while satisfying precision constraints. This paper presents output error expressions for a large feedforward neural net, which are based on statistical error analysis. Weight quantization errors as well as arithmetic errors due to rounding of multiplier output and sigmoid output are modeled. The results indicate that for equal wordlengths, multiplier roundoff errors exceed weight quantization errors by about an order of magnitude.</description><subject>Aggregates</subject><subject>Arithmetic</subject><subject>Error analysis</subject><subject>Feedforward neural networks</subject><subject>Hardware</subject><subject>Multi-layer neural network</subject><subject>Neural networks</subject><subject>Nonhomogeneous media</subject><subject>Quantization</subject><subject>Roundoff errors</subject><isbn>0780314212</isbn><isbn>9780780314214</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1993</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkL1OwzAYRS0hJKD0AWDyxJbgv9jxiCJKi6qywByZ-DMyuHGwE5W-fSOVu5zl6AwXoTtKSkqJfty8NrtdSbXmpaKKcHWBboiqCaeCUXaFljl_k3lCVEyra7Re-T-wxRB9P-IUp95G5zCkFBM2vQnH7DOODgeTvgA7AOtiOphkcQ9TMmHGeIjpJ9-iS2dChuU_F-hj9fzerIvt28umedoWnhE-FsxU2krdVaojNbedqxl0VgtprHJWKGm1c4K47lMJxoQ1ADUIAsJWvFbM8AV6OHeHFH8nyGO797mDEEwPccotk6TiTMpZvD-LHgDaIfm9Scf2fAo_AWOZWT0</recordid><startdate>1993</startdate><enddate>1993</enddate><creator>Choi, H.</creator><creator>Burleson, W.P.</creator><creator>Phatak, D.S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1993</creationdate><title>Fixed-point roundoff error analysis of large feedforward neural networks</title><author>Choi, H. ; Burleson, W.P. ; Phatak, D.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-2a59d69c57c083dcf82ecd946ad7fd476d9ff40fcb74224daee8e40e4d53872a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Aggregates</topic><topic>Arithmetic</topic><topic>Error analysis</topic><topic>Feedforward neural networks</topic><topic>Hardware</topic><topic>Multi-layer neural network</topic><topic>Neural networks</topic><topic>Nonhomogeneous media</topic><topic>Quantization</topic><topic>Roundoff errors</topic><toplevel>online_resources</toplevel><creatorcontrib>Choi, H.</creatorcontrib><creatorcontrib>Burleson, W.P.</creatorcontrib><creatorcontrib>Phatak, D.S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Choi, H.</au><au>Burleson, W.P.</au><au>Phatak, D.S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fixed-point roundoff error analysis of large feedforward neural networks</atitle><btitle>International Joint Conference on Neural Networks, Nagoya, 1993</btitle><stitle>IJCNN</stitle><date>1993</date><risdate>1993</risdate><volume>2</volume><spage>1947</spage><epage>1950 vol.2</epage><pages>1947-1950 vol.2</pages><isbn>0780314212</isbn><isbn>9780780314214</isbn><abstract>Digital implementations of neural nets must consider finite wordlength effects. For large sized nets, it is particularly important to investigate the roundoff errors in order to realize low-cost hardware implementations while satisfying precision constraints. This paper presents output error expressions for a large feedforward neural net, which are based on statistical error analysis. Weight quantization errors as well as arithmetic errors due to rounding of multiplier output and sigmoid output are modeled. The results indicate that for equal wordlengths, multiplier roundoff errors exceed weight quantization errors by about an order of magnitude.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.1993.717037</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780314212
ispartof International Joint Conference on Neural Networks, Nagoya, 1993, 1993, Vol.2, p.1947-1950 vol.2
issn
language eng
recordid cdi_proquest_miscellaneous_26053266
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Aggregates
Arithmetic
Error analysis
Feedforward neural networks
Hardware
Multi-layer neural network
Neural networks
Nonhomogeneous media
Quantization
Roundoff errors
title Fixed-point roundoff error analysis of large feedforward neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A03%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fixed-point%20roundoff%20error%20analysis%20of%20large%20feedforward%20neural%20networks&rft.btitle=International%20Joint%20Conference%20on%20Neural%20Networks,%20Nagoya,%201993&rft.au=Choi,%20H.&rft.date=1993&rft.volume=2&rft.spage=1947&rft.epage=1950%20vol.2&rft.pages=1947-1950%20vol.2&rft.isbn=0780314212&rft.isbn_list=9780780314214&rft_id=info:doi/10.1109/IJCNN.1993.717037&rft_dat=%3Cproquest_6IE%3E26053266%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26053266&rft_id=info:pmid/&rft_ieee_id=717037&rfr_iscdi=true