Spin Crossover of Thiophosgene via Multidimensional Heavy-Atom Quantum Tunneling

The spin-crossover reaction of thiophosgene has drawn broad attention from both experimenters and theoreticians as a prime example of radiationless intramolecular decay via intersystem crossing. Despite multiple attempts over 20 years, theoretical predictions have typically been orders of magnitude...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2021-12, Vol.143 (49), p.20952-20961
Hauptverfasser: Heller, Eric R, Richardson, Jeremy O
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20961
container_issue 49
container_start_page 20952
container_title Journal of the American Chemical Society
container_volume 143
creator Heller, Eric R
Richardson, Jeremy O
description The spin-crossover reaction of thiophosgene has drawn broad attention from both experimenters and theoreticians as a prime example of radiationless intramolecular decay via intersystem crossing. Despite multiple attempts over 20 years, theoretical predictions have typically been orders of magnitude in error relative to the experimentally measured triplet lifetime. We address the T1 → S0 transition by the first application of semiclassical golden-rule instanton theory in conjunction with on-the-fly electronic-structure calculations based on multireference perturbation theory. Our first-principles approach provides excellent agreement with the experimental rates. This was only possible because instanton theory goes beyond previous methods by locating the optimal tunneling pathway in full dimensionality and thus captures “corner cutting” effects. Since the reaction is situated in the Marcus inverted regime, the tunneling mechanism can be interpreted in terms of two classical trajectories, one traveling forward and one backward in imaginary time, which are connected by particle–antiparticle creation and annihilation events. The calculated mechanism indicates that the spin crossover is sped up by many orders of magnitude due to multidimensional quantum tunneling of the carbon atom even at room temperature.
doi_str_mv 10.1021/jacs.1c10088
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2605231229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2605231229</sourcerecordid><originalsourceid>FETCH-LOGICAL-a362t-e13caf37b00f2a7e0b1134e4a39cacafd6d7402a42aa62c910f8ff404d4de6373</originalsourceid><addsrcrecordid>eNptkE1PwkAQhjdGI4jePJsePVic_WBbjoSomGDUiOdmaWdhSbuL3S4J_942oF48TSbzzDuZh5BrCkMKjN5vVO6HNKcAaXpC-nTEIB5RJk9JHwBYnKSS98iF95u2FSyl56THRSpkmtA-efvYGhtNa-e922EdOR0t1sZt186v0GK0Myp6CWVjClOh9cZZVUYzVLt9PGlcFb0HZZtQRYtgLZbGri7JmValx6tjHZDPx4fFdBbPX5-ep5N5rLhkTYyU50rzZAmgmUoQlpRygULxca7aSSGLRABTgiklWT6moFOtBYhCFCh5wgfk9pC7rd1XQN9klfE5lqWy6ILPmIQR45SxcYveHdC8e7NGnW1rU6l6n1HIOodZ5zA7Omzxm2NyWFZY_MI_0v5Od1sbF-rWif8_6xsZX3sX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605231229</pqid></control><display><type>article</type><title>Spin Crossover of Thiophosgene via Multidimensional Heavy-Atom Quantum Tunneling</title><source>American Chemical Society Journals</source><creator>Heller, Eric R ; Richardson, Jeremy O</creator><creatorcontrib>Heller, Eric R ; Richardson, Jeremy O</creatorcontrib><description>The spin-crossover reaction of thiophosgene has drawn broad attention from both experimenters and theoreticians as a prime example of radiationless intramolecular decay via intersystem crossing. Despite multiple attempts over 20 years, theoretical predictions have typically been orders of magnitude in error relative to the experimentally measured triplet lifetime. We address the T1 → S0 transition by the first application of semiclassical golden-rule instanton theory in conjunction with on-the-fly electronic-structure calculations based on multireference perturbation theory. Our first-principles approach provides excellent agreement with the experimental rates. This was only possible because instanton theory goes beyond previous methods by locating the optimal tunneling pathway in full dimensionality and thus captures “corner cutting” effects. Since the reaction is situated in the Marcus inverted regime, the tunneling mechanism can be interpreted in terms of two classical trajectories, one traveling forward and one backward in imaginary time, which are connected by particle–antiparticle creation and annihilation events. The calculated mechanism indicates that the spin crossover is sped up by many orders of magnitude due to multidimensional quantum tunneling of the carbon atom even at room temperature.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.1c10088</identifier><identifier>PMID: 34846871</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2021-12, Vol.143 (49), p.20952-20961</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a362t-e13caf37b00f2a7e0b1134e4a39cacafd6d7402a42aa62c910f8ff404d4de6373</citedby><cites>FETCH-LOGICAL-a362t-e13caf37b00f2a7e0b1134e4a39cacafd6d7402a42aa62c910f8ff404d4de6373</cites><orcidid>0000-0002-9429-151X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.1c10088$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.1c10088$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34846871$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heller, Eric R</creatorcontrib><creatorcontrib>Richardson, Jeremy O</creatorcontrib><title>Spin Crossover of Thiophosgene via Multidimensional Heavy-Atom Quantum Tunneling</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The spin-crossover reaction of thiophosgene has drawn broad attention from both experimenters and theoreticians as a prime example of radiationless intramolecular decay via intersystem crossing. Despite multiple attempts over 20 years, theoretical predictions have typically been orders of magnitude in error relative to the experimentally measured triplet lifetime. We address the T1 → S0 transition by the first application of semiclassical golden-rule instanton theory in conjunction with on-the-fly electronic-structure calculations based on multireference perturbation theory. Our first-principles approach provides excellent agreement with the experimental rates. This was only possible because instanton theory goes beyond previous methods by locating the optimal tunneling pathway in full dimensionality and thus captures “corner cutting” effects. Since the reaction is situated in the Marcus inverted regime, the tunneling mechanism can be interpreted in terms of two classical trajectories, one traveling forward and one backward in imaginary time, which are connected by particle–antiparticle creation and annihilation events. The calculated mechanism indicates that the spin crossover is sped up by many orders of magnitude due to multidimensional quantum tunneling of the carbon atom even at room temperature.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkE1PwkAQhjdGI4jePJsePVic_WBbjoSomGDUiOdmaWdhSbuL3S4J_942oF48TSbzzDuZh5BrCkMKjN5vVO6HNKcAaXpC-nTEIB5RJk9JHwBYnKSS98iF95u2FSyl56THRSpkmtA-efvYGhtNa-e922EdOR0t1sZt186v0GK0Myp6CWVjClOh9cZZVUYzVLt9PGlcFb0HZZtQRYtgLZbGri7JmValx6tjHZDPx4fFdBbPX5-ep5N5rLhkTYyU50rzZAmgmUoQlpRygULxca7aSSGLRABTgiklWT6moFOtBYhCFCh5wgfk9pC7rd1XQN9klfE5lqWy6ILPmIQR45SxcYveHdC8e7NGnW1rU6l6n1HIOodZ5zA7Omzxm2NyWFZY_MI_0v5Od1sbF-rWif8_6xsZX3sX</recordid><startdate>20211215</startdate><enddate>20211215</enddate><creator>Heller, Eric R</creator><creator>Richardson, Jeremy O</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9429-151X</orcidid></search><sort><creationdate>20211215</creationdate><title>Spin Crossover of Thiophosgene via Multidimensional Heavy-Atom Quantum Tunneling</title><author>Heller, Eric R ; Richardson, Jeremy O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a362t-e13caf37b00f2a7e0b1134e4a39cacafd6d7402a42aa62c910f8ff404d4de6373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heller, Eric R</creatorcontrib><creatorcontrib>Richardson, Jeremy O</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heller, Eric R</au><au>Richardson, Jeremy O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin Crossover of Thiophosgene via Multidimensional Heavy-Atom Quantum Tunneling</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2021-12-15</date><risdate>2021</risdate><volume>143</volume><issue>49</issue><spage>20952</spage><epage>20961</epage><pages>20952-20961</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The spin-crossover reaction of thiophosgene has drawn broad attention from both experimenters and theoreticians as a prime example of radiationless intramolecular decay via intersystem crossing. Despite multiple attempts over 20 years, theoretical predictions have typically been orders of magnitude in error relative to the experimentally measured triplet lifetime. We address the T1 → S0 transition by the first application of semiclassical golden-rule instanton theory in conjunction with on-the-fly electronic-structure calculations based on multireference perturbation theory. Our first-principles approach provides excellent agreement with the experimental rates. This was only possible because instanton theory goes beyond previous methods by locating the optimal tunneling pathway in full dimensionality and thus captures “corner cutting” effects. Since the reaction is situated in the Marcus inverted regime, the tunneling mechanism can be interpreted in terms of two classical trajectories, one traveling forward and one backward in imaginary time, which are connected by particle–antiparticle creation and annihilation events. The calculated mechanism indicates that the spin crossover is sped up by many orders of magnitude due to multidimensional quantum tunneling of the carbon atom even at room temperature.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34846871</pmid><doi>10.1021/jacs.1c10088</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9429-151X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2021-12, Vol.143 (49), p.20952-20961
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2605231229
source American Chemical Society Journals
title Spin Crossover of Thiophosgene via Multidimensional Heavy-Atom Quantum Tunneling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A50%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin%20Crossover%20of%20Thiophosgene%20via%20Multidimensional%20Heavy-Atom%20Quantum%20Tunneling&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Heller,%20Eric%20R&rft.date=2021-12-15&rft.volume=143&rft.issue=49&rft.spage=20952&rft.epage=20961&rft.pages=20952-20961&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.1c10088&rft_dat=%3Cproquest_cross%3E2605231229%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605231229&rft_id=info:pmid/34846871&rfr_iscdi=true