Increasing loop flexibility affords low-temperature adaptation of a moderate thermophilic malate dehydrogenase from Geobacillus stearothermophilus

Abstract Malate dehydrogenase (MDH) catalyzes the reversible reduction of nicotinamide adenine dinucleotide from oxaloacetate to L-malate. MDH from moderate thermophilic Geobacillus stearothermophilus (gs-MDH) has high thermal stability and substrate specificity and is used as a diagnostic reagent....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein engineering, design and selection design and selection, 2021-02, Vol.34
Hauptverfasser: Shimozawa, Yuya, Himiyama, Tomoki, Nakamura, Tsutomu, Nishiya, Yoshiaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Protein engineering, design and selection
container_volume 34
creator Shimozawa, Yuya
Himiyama, Tomoki
Nakamura, Tsutomu
Nishiya, Yoshiaki
description Abstract Malate dehydrogenase (MDH) catalyzes the reversible reduction of nicotinamide adenine dinucleotide from oxaloacetate to L-malate. MDH from moderate thermophilic Geobacillus stearothermophilus (gs-MDH) has high thermal stability and substrate specificity and is used as a diagnostic reagent. In this study, gs-MDH was engineered to increase its catalytic activity at low temperatures. Based on sequential and structural comparison with lactate dehydrogenase from G. stearothermophilus, we selected G218 as a mutation site to increase the loop flexibility pivotal for MDH catalysis. The G218 mutants showed significantly higher specific activities than the wild type at low temperatures and maintained thermal stability. The crystal structure of the G218Y mutant, which had the highest catalytic efficiency among all the G218 mutants, suggested that the flexibility of the mobile loop was successfully increased by the bulky side chain. Therefore, this study demonstrated the low-temperature adaptation of MDH by facilitating conformational changes during catalysis.
doi_str_mv 10.1093/protein/gzab026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2605230181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/protein/gzab026</oup_id><sourcerecordid>2605230181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-b92e43cb1ae4a27aea2905ff63665e7fd8bb576e40f8329a2e59c81ef8464dd63</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVIaT7ac29FxxBwVl-W7WMJbRII5JKezdga7SrIlivJtJufkV9cL7vZa04zzDzvCzMvId84u-GskasphoxuXK1foWNCn5BzXileMC7V6bEX-oxcpPTCFqLi_DM5k6ouGW_UOXl7GPuIkNy4pj6EiVqP_1znvMtbCtaGaNKy-FtkHCaMkOeIFAxMGbILIw2WAh2C2a2Q5g3GIUybRd7TAfxuZnCzNTGscYSE1MYw0DsMHfTO-znRlBGWI47COX0hnyz4hF8P9ZL8_vXz-fa-eHy6e7j98Vj0sqlz0TUClew7DqhAVIAgGlZaq6XWJVbW1F1XVhoVs7UUDQgsm77maGullTFaXpKrve_yxD8zptwOLvXoPYwY5tQKzUohGa_5gq72aB9DShFtO0U3QNy2nLW7INpDEO0hiEXx_WA-dwOaI__--QW43gNhnj50-w8kvptK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605230181</pqid></control><display><type>article</type><title>Increasing loop flexibility affords low-temperature adaptation of a moderate thermophilic malate dehydrogenase from Geobacillus stearothermophilus</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Shimozawa, Yuya ; Himiyama, Tomoki ; Nakamura, Tsutomu ; Nishiya, Yoshiaki</creator><creatorcontrib>Shimozawa, Yuya ; Himiyama, Tomoki ; Nakamura, Tsutomu ; Nishiya, Yoshiaki</creatorcontrib><description>Abstract Malate dehydrogenase (MDH) catalyzes the reversible reduction of nicotinamide adenine dinucleotide from oxaloacetate to L-malate. MDH from moderate thermophilic Geobacillus stearothermophilus (gs-MDH) has high thermal stability and substrate specificity and is used as a diagnostic reagent. In this study, gs-MDH was engineered to increase its catalytic activity at low temperatures. Based on sequential and structural comparison with lactate dehydrogenase from G. stearothermophilus, we selected G218 as a mutation site to increase the loop flexibility pivotal for MDH catalysis. The G218 mutants showed significantly higher specific activities than the wild type at low temperatures and maintained thermal stability. The crystal structure of the G218Y mutant, which had the highest catalytic efficiency among all the G218 mutants, suggested that the flexibility of the mobile loop was successfully increased by the bulky side chain. Therefore, this study demonstrated the low-temperature adaptation of MDH by facilitating conformational changes during catalysis.</description><identifier>ISSN: 1741-0126</identifier><identifier>EISSN: 1741-0134</identifier><identifier>DOI: 10.1093/protein/gzab026</identifier><identifier>PMID: 34850194</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Geobacillus stearothermophilus - genetics ; Geobacillus stearothermophilus - metabolism ; Kinetics ; L-Lactate Dehydrogenase - metabolism ; Malate Dehydrogenase - genetics ; Malate Dehydrogenase - metabolism ; Temperature</subject><ispartof>Protein engineering, design and selection, 2021-02, Vol.34</ispartof><rights>The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-b92e43cb1ae4a27aea2905ff63665e7fd8bb576e40f8329a2e59c81ef8464dd63</citedby><cites>FETCH-LOGICAL-c398t-b92e43cb1ae4a27aea2905ff63665e7fd8bb576e40f8329a2e59c81ef8464dd63</cites><orcidid>0000-0001-5712-0669 ; 0000-0001-5252-1834</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34850194$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shimozawa, Yuya</creatorcontrib><creatorcontrib>Himiyama, Tomoki</creatorcontrib><creatorcontrib>Nakamura, Tsutomu</creatorcontrib><creatorcontrib>Nishiya, Yoshiaki</creatorcontrib><title>Increasing loop flexibility affords low-temperature adaptation of a moderate thermophilic malate dehydrogenase from Geobacillus stearothermophilus</title><title>Protein engineering, design and selection</title><addtitle>Protein Eng Des Sel</addtitle><description>Abstract Malate dehydrogenase (MDH) catalyzes the reversible reduction of nicotinamide adenine dinucleotide from oxaloacetate to L-malate. MDH from moderate thermophilic Geobacillus stearothermophilus (gs-MDH) has high thermal stability and substrate specificity and is used as a diagnostic reagent. In this study, gs-MDH was engineered to increase its catalytic activity at low temperatures. Based on sequential and structural comparison with lactate dehydrogenase from G. stearothermophilus, we selected G218 as a mutation site to increase the loop flexibility pivotal for MDH catalysis. The G218 mutants showed significantly higher specific activities than the wild type at low temperatures and maintained thermal stability. The crystal structure of the G218Y mutant, which had the highest catalytic efficiency among all the G218 mutants, suggested that the flexibility of the mobile loop was successfully increased by the bulky side chain. Therefore, this study demonstrated the low-temperature adaptation of MDH by facilitating conformational changes during catalysis.</description><subject>Geobacillus stearothermophilus - genetics</subject><subject>Geobacillus stearothermophilus - metabolism</subject><subject>Kinetics</subject><subject>L-Lactate Dehydrogenase - metabolism</subject><subject>Malate Dehydrogenase - genetics</subject><subject>Malate Dehydrogenase - metabolism</subject><subject>Temperature</subject><issn>1741-0126</issn><issn>1741-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1r3DAQhkVIaT7ac29FxxBwVl-W7WMJbRII5JKezdga7SrIlivJtJufkV9cL7vZa04zzDzvCzMvId84u-GskasphoxuXK1foWNCn5BzXileMC7V6bEX-oxcpPTCFqLi_DM5k6ouGW_UOXl7GPuIkNy4pj6EiVqP_1znvMtbCtaGaNKy-FtkHCaMkOeIFAxMGbILIw2WAh2C2a2Q5g3GIUybRd7TAfxuZnCzNTGscYSE1MYw0DsMHfTO-znRlBGWI47COX0hnyz4hF8P9ZL8_vXz-fa-eHy6e7j98Vj0sqlz0TUClew7DqhAVIAgGlZaq6XWJVbW1F1XVhoVs7UUDQgsm77maGullTFaXpKrve_yxD8zptwOLvXoPYwY5tQKzUohGa_5gq72aB9DShFtO0U3QNy2nLW7INpDEO0hiEXx_WA-dwOaI__--QW43gNhnj50-w8kvptK</recordid><startdate>20210215</startdate><enddate>20210215</enddate><creator>Shimozawa, Yuya</creator><creator>Himiyama, Tomoki</creator><creator>Nakamura, Tsutomu</creator><creator>Nishiya, Yoshiaki</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5712-0669</orcidid><orcidid>https://orcid.org/0000-0001-5252-1834</orcidid></search><sort><creationdate>20210215</creationdate><title>Increasing loop flexibility affords low-temperature adaptation of a moderate thermophilic malate dehydrogenase from Geobacillus stearothermophilus</title><author>Shimozawa, Yuya ; Himiyama, Tomoki ; Nakamura, Tsutomu ; Nishiya, Yoshiaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-b92e43cb1ae4a27aea2905ff63665e7fd8bb576e40f8329a2e59c81ef8464dd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Geobacillus stearothermophilus - genetics</topic><topic>Geobacillus stearothermophilus - metabolism</topic><topic>Kinetics</topic><topic>L-Lactate Dehydrogenase - metabolism</topic><topic>Malate Dehydrogenase - genetics</topic><topic>Malate Dehydrogenase - metabolism</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shimozawa, Yuya</creatorcontrib><creatorcontrib>Himiyama, Tomoki</creatorcontrib><creatorcontrib>Nakamura, Tsutomu</creatorcontrib><creatorcontrib>Nishiya, Yoshiaki</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Protein engineering, design and selection</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shimozawa, Yuya</au><au>Himiyama, Tomoki</au><au>Nakamura, Tsutomu</au><au>Nishiya, Yoshiaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increasing loop flexibility affords low-temperature adaptation of a moderate thermophilic malate dehydrogenase from Geobacillus stearothermophilus</atitle><jtitle>Protein engineering, design and selection</jtitle><addtitle>Protein Eng Des Sel</addtitle><date>2021-02-15</date><risdate>2021</risdate><volume>34</volume><issn>1741-0126</issn><eissn>1741-0134</eissn><abstract>Abstract Malate dehydrogenase (MDH) catalyzes the reversible reduction of nicotinamide adenine dinucleotide from oxaloacetate to L-malate. MDH from moderate thermophilic Geobacillus stearothermophilus (gs-MDH) has high thermal stability and substrate specificity and is used as a diagnostic reagent. In this study, gs-MDH was engineered to increase its catalytic activity at low temperatures. Based on sequential and structural comparison with lactate dehydrogenase from G. stearothermophilus, we selected G218 as a mutation site to increase the loop flexibility pivotal for MDH catalysis. The G218 mutants showed significantly higher specific activities than the wild type at low temperatures and maintained thermal stability. The crystal structure of the G218Y mutant, which had the highest catalytic efficiency among all the G218 mutants, suggested that the flexibility of the mobile loop was successfully increased by the bulky side chain. Therefore, this study demonstrated the low-temperature adaptation of MDH by facilitating conformational changes during catalysis.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>34850194</pmid><doi>10.1093/protein/gzab026</doi><orcidid>https://orcid.org/0000-0001-5712-0669</orcidid><orcidid>https://orcid.org/0000-0001-5252-1834</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1741-0126
ispartof Protein engineering, design and selection, 2021-02, Vol.34
issn 1741-0126
1741-0134
language eng
recordid cdi_proquest_miscellaneous_2605230181
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Geobacillus stearothermophilus - genetics
Geobacillus stearothermophilus - metabolism
Kinetics
L-Lactate Dehydrogenase - metabolism
Malate Dehydrogenase - genetics
Malate Dehydrogenase - metabolism
Temperature
title Increasing loop flexibility affords low-temperature adaptation of a moderate thermophilic malate dehydrogenase from Geobacillus stearothermophilus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A27%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increasing%20loop%20flexibility%20affords%20low-temperature%20adaptation%20of%20a%20moderate%20thermophilic%20malate%20dehydrogenase%20from%20Geobacillus%20stearothermophilus&rft.jtitle=Protein%20engineering,%20design%20and%20selection&rft.au=Shimozawa,%20Yuya&rft.date=2021-02-15&rft.volume=34&rft.issn=1741-0126&rft.eissn=1741-0134&rft_id=info:doi/10.1093/protein/gzab026&rft_dat=%3Cproquest_cross%3E2605230181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605230181&rft_id=info:pmid/34850194&rft_oup_id=10.1093/protein/gzab026&rfr_iscdi=true