Bladder cancer biomarker screening based on non-targeted urine metabolomics

Purpose Bladder cancer is one of the most common malignancies of the urinary system, and its screening relies heavily on invasive cystoscopy, which increases the risk of urethral injury and infection. This study aims to use non-targeted metabolomics methods to screen for metabolites that are signifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International urology and nephrology 2022, Vol.54 (1), p.23-29
Hauptverfasser: Li, Jinkun, Cheng, Bisheng, Xie, Hongbing, Zhan, Chuanchuan, Li, Shipeng, Bai, Peiming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29
container_issue 1
container_start_page 23
container_title International urology and nephrology
container_volume 54
creator Li, Jinkun
Cheng, Bisheng
Xie, Hongbing
Zhan, Chuanchuan
Li, Shipeng
Bai, Peiming
description Purpose Bladder cancer is one of the most common malignancies of the urinary system, and its screening relies heavily on invasive cystoscopy, which increases the risk of urethral injury and infection. This study aims to use non-targeted metabolomics methods to screen for metabolites that are significantly different between the urine of bladder cancer patients and cancer-free controls. Methods In this study, liquid chromatography–mass spectrometry was used to analyze the urine of bladder cancer patients ( n  = 57) and the cancer-free controls ( n  = 38) by non-targeted metabolomic analysis and metabolite identification. Results The results showed that there were significant differences in the expression of 27 metabolites between bladder cancer patients and the cancer-free controls. Conclusion In the multivariate statistical analysis of this study, the urinary metabolic profile data of bladder cancer patients were analyzed, and the receiver operating characteristic curve analysis showed that it is possible to perform non-invasive clinical diagnoses of bladder cancer through these candidate biomarkers.
doi_str_mv 10.1007/s11255-021-03080-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2605230037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2616788274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-441f76f20a8b611fee1e862a1b6df6c247dddbd05668f02cf666dbee2cde4dd73</originalsourceid><addsrcrecordid>eNp9kE1PxCAQhonR6PrxBzyYJl68oAO0FI-68SuaeNEzoTDddG1BoT3472VdPxIPngaYZ14mDyGHDE4ZQH2WGONVRYEzCgIUULlBZqyqBeWVKjfJLL8yyiQXO2Q3pSUAnCuAbbIjSlWB4PWM3F_2xjmMhTXe5tJ0YTDxJZ-SjYi-84uiMQldEXzhg6ejiQsc832KncdiwNE0oQ9DZ9M-2WpNn_Dgq-6R5-urp_ktfXi8uZtfPFBbsvORliVra9lyMKqRjLWIDJXkhjXStdLysnbONQ4qKVUL3LZSStcgcuuwdK4We-Rknfsaw9uEadRDlyz2vfEYpqS5hIoLALFCj_-gyzBFn7fLFJO1UrwuM8XXlI0hpYitfo1d1vCuGeiVar1WrbNq_alayzx09BU9NQO6n5FvtxkQayDlll9g_P37n9gP3zCJbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616788274</pqid></control><display><type>article</type><title>Bladder cancer biomarker screening based on non-targeted urine metabolomics</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Li, Jinkun ; Cheng, Bisheng ; Xie, Hongbing ; Zhan, Chuanchuan ; Li, Shipeng ; Bai, Peiming</creator><creatorcontrib>Li, Jinkun ; Cheng, Bisheng ; Xie, Hongbing ; Zhan, Chuanchuan ; Li, Shipeng ; Bai, Peiming</creatorcontrib><description>Purpose Bladder cancer is one of the most common malignancies of the urinary system, and its screening relies heavily on invasive cystoscopy, which increases the risk of urethral injury and infection. This study aims to use non-targeted metabolomics methods to screen for metabolites that are significantly different between the urine of bladder cancer patients and cancer-free controls. Methods In this study, liquid chromatography–mass spectrometry was used to analyze the urine of bladder cancer patients ( n  = 57) and the cancer-free controls ( n  = 38) by non-targeted metabolomic analysis and metabolite identification. Results The results showed that there were significant differences in the expression of 27 metabolites between bladder cancer patients and the cancer-free controls. Conclusion In the multivariate statistical analysis of this study, the urinary metabolic profile data of bladder cancer patients were analyzed, and the receiver operating characteristic curve analysis showed that it is possible to perform non-invasive clinical diagnoses of bladder cancer through these candidate biomarkers.</description><identifier>ISSN: 0301-1623</identifier><identifier>EISSN: 1573-2584</identifier><identifier>DOI: 10.1007/s11255-021-03080-6</identifier><identifier>PMID: 34850327</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biomarkers ; Biomarkers, Tumor - metabolism ; Biomarkers, Tumor - urine ; Bladder cancer ; Cancer ; Early Detection of Cancer ; Humans ; Liquid chromatography ; Mass spectroscopy ; Medicine ; Medicine &amp; Public Health ; Metabolites ; Metabolome ; Metabolomics ; Nephrology ; Patients ; Statistical analysis ; Urinary Bladder Neoplasms - diagnosis ; Urinary Bladder Neoplasms - metabolism ; Urinary Bladder Neoplasms - urine ; Urine ; Urology ; Urology - Original Paper</subject><ispartof>International urology and nephrology, 2022, Vol.54 (1), p.23-29</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature B.V.</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-441f76f20a8b611fee1e862a1b6df6c247dddbd05668f02cf666dbee2cde4dd73</citedby><cites>FETCH-LOGICAL-c419t-441f76f20a8b611fee1e862a1b6df6c247dddbd05668f02cf666dbee2cde4dd73</cites><orcidid>0000-0003-4676-755X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11255-021-03080-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11255-021-03080-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34850327$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Jinkun</creatorcontrib><creatorcontrib>Cheng, Bisheng</creatorcontrib><creatorcontrib>Xie, Hongbing</creatorcontrib><creatorcontrib>Zhan, Chuanchuan</creatorcontrib><creatorcontrib>Li, Shipeng</creatorcontrib><creatorcontrib>Bai, Peiming</creatorcontrib><title>Bladder cancer biomarker screening based on non-targeted urine metabolomics</title><title>International urology and nephrology</title><addtitle>Int Urol Nephrol</addtitle><addtitle>Int Urol Nephrol</addtitle><description>Purpose Bladder cancer is one of the most common malignancies of the urinary system, and its screening relies heavily on invasive cystoscopy, which increases the risk of urethral injury and infection. This study aims to use non-targeted metabolomics methods to screen for metabolites that are significantly different between the urine of bladder cancer patients and cancer-free controls. Methods In this study, liquid chromatography–mass spectrometry was used to analyze the urine of bladder cancer patients ( n  = 57) and the cancer-free controls ( n  = 38) by non-targeted metabolomic analysis and metabolite identification. Results The results showed that there were significant differences in the expression of 27 metabolites between bladder cancer patients and the cancer-free controls. Conclusion In the multivariate statistical analysis of this study, the urinary metabolic profile data of bladder cancer patients were analyzed, and the receiver operating characteristic curve analysis showed that it is possible to perform non-invasive clinical diagnoses of bladder cancer through these candidate biomarkers.</description><subject>Biomarkers</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Biomarkers, Tumor - urine</subject><subject>Bladder cancer</subject><subject>Cancer</subject><subject>Early Detection of Cancer</subject><subject>Humans</subject><subject>Liquid chromatography</subject><subject>Mass spectroscopy</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metabolites</subject><subject>Metabolome</subject><subject>Metabolomics</subject><subject>Nephrology</subject><subject>Patients</subject><subject>Statistical analysis</subject><subject>Urinary Bladder Neoplasms - diagnosis</subject><subject>Urinary Bladder Neoplasms - metabolism</subject><subject>Urinary Bladder Neoplasms - urine</subject><subject>Urine</subject><subject>Urology</subject><subject>Urology - Original Paper</subject><issn>0301-1623</issn><issn>1573-2584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kE1PxCAQhonR6PrxBzyYJl68oAO0FI-68SuaeNEzoTDddG1BoT3472VdPxIPngaYZ14mDyGHDE4ZQH2WGONVRYEzCgIUULlBZqyqBeWVKjfJLL8yyiQXO2Q3pSUAnCuAbbIjSlWB4PWM3F_2xjmMhTXe5tJ0YTDxJZ-SjYi-84uiMQldEXzhg6ejiQsc832KncdiwNE0oQ9DZ9M-2WpNn_Dgq-6R5-urp_ktfXi8uZtfPFBbsvORliVra9lyMKqRjLWIDJXkhjXStdLysnbONQ4qKVUL3LZSStcgcuuwdK4We-Rknfsaw9uEadRDlyz2vfEYpqS5hIoLALFCj_-gyzBFn7fLFJO1UrwuM8XXlI0hpYitfo1d1vCuGeiVar1WrbNq_alayzx09BU9NQO6n5FvtxkQayDlll9g_P37n9gP3zCJbw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Li, Jinkun</creator><creator>Cheng, Bisheng</creator><creator>Xie, Hongbing</creator><creator>Zhan, Chuanchuan</creator><creator>Li, Shipeng</creator><creator>Bai, Peiming</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4676-755X</orcidid></search><sort><creationdate>2022</creationdate><title>Bladder cancer biomarker screening based on non-targeted urine metabolomics</title><author>Li, Jinkun ; Cheng, Bisheng ; Xie, Hongbing ; Zhan, Chuanchuan ; Li, Shipeng ; Bai, Peiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-441f76f20a8b611fee1e862a1b6df6c247dddbd05668f02cf666dbee2cde4dd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomarkers</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Biomarkers, Tumor - urine</topic><topic>Bladder cancer</topic><topic>Cancer</topic><topic>Early Detection of Cancer</topic><topic>Humans</topic><topic>Liquid chromatography</topic><topic>Mass spectroscopy</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metabolites</topic><topic>Metabolome</topic><topic>Metabolomics</topic><topic>Nephrology</topic><topic>Patients</topic><topic>Statistical analysis</topic><topic>Urinary Bladder Neoplasms - diagnosis</topic><topic>Urinary Bladder Neoplasms - metabolism</topic><topic>Urinary Bladder Neoplasms - urine</topic><topic>Urine</topic><topic>Urology</topic><topic>Urology - Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jinkun</creatorcontrib><creatorcontrib>Cheng, Bisheng</creatorcontrib><creatorcontrib>Xie, Hongbing</creatorcontrib><creatorcontrib>Zhan, Chuanchuan</creatorcontrib><creatorcontrib>Li, Shipeng</creatorcontrib><creatorcontrib>Bai, Peiming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>International urology and nephrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jinkun</au><au>Cheng, Bisheng</au><au>Xie, Hongbing</au><au>Zhan, Chuanchuan</au><au>Li, Shipeng</au><au>Bai, Peiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bladder cancer biomarker screening based on non-targeted urine metabolomics</atitle><jtitle>International urology and nephrology</jtitle><stitle>Int Urol Nephrol</stitle><addtitle>Int Urol Nephrol</addtitle><date>2022</date><risdate>2022</risdate><volume>54</volume><issue>1</issue><spage>23</spage><epage>29</epage><pages>23-29</pages><issn>0301-1623</issn><eissn>1573-2584</eissn><abstract>Purpose Bladder cancer is one of the most common malignancies of the urinary system, and its screening relies heavily on invasive cystoscopy, which increases the risk of urethral injury and infection. This study aims to use non-targeted metabolomics methods to screen for metabolites that are significantly different between the urine of bladder cancer patients and cancer-free controls. Methods In this study, liquid chromatography–mass spectrometry was used to analyze the urine of bladder cancer patients ( n  = 57) and the cancer-free controls ( n  = 38) by non-targeted metabolomic analysis and metabolite identification. Results The results showed that there were significant differences in the expression of 27 metabolites between bladder cancer patients and the cancer-free controls. Conclusion In the multivariate statistical analysis of this study, the urinary metabolic profile data of bladder cancer patients were analyzed, and the receiver operating characteristic curve analysis showed that it is possible to perform non-invasive clinical diagnoses of bladder cancer through these candidate biomarkers.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>34850327</pmid><doi>10.1007/s11255-021-03080-6</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4676-755X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0301-1623
ispartof International urology and nephrology, 2022, Vol.54 (1), p.23-29
issn 0301-1623
1573-2584
language eng
recordid cdi_proquest_miscellaneous_2605230037
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Biomarkers
Biomarkers, Tumor - metabolism
Biomarkers, Tumor - urine
Bladder cancer
Cancer
Early Detection of Cancer
Humans
Liquid chromatography
Mass spectroscopy
Medicine
Medicine & Public Health
Metabolites
Metabolome
Metabolomics
Nephrology
Patients
Statistical analysis
Urinary Bladder Neoplasms - diagnosis
Urinary Bladder Neoplasms - metabolism
Urinary Bladder Neoplasms - urine
Urine
Urology
Urology - Original Paper
title Bladder cancer biomarker screening based on non-targeted urine metabolomics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A00%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bladder%20cancer%20biomarker%20screening%20based%20on%20non-targeted%20urine%20metabolomics&rft.jtitle=International%20urology%20and%20nephrology&rft.au=Li,%20Jinkun&rft.date=2022&rft.volume=54&rft.issue=1&rft.spage=23&rft.epage=29&rft.pages=23-29&rft.issn=0301-1623&rft.eissn=1573-2584&rft_id=info:doi/10.1007/s11255-021-03080-6&rft_dat=%3Cproquest_cross%3E2616788274%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616788274&rft_id=info:pmid/34850327&rfr_iscdi=true