Versatile Post-Doping toward Two-Dimensional Semiconductors

We have developed a simple and straightforward way to realize controlled postdoping toward 2D transition metal dichalcogenides (TMDs). The key idea is to use low-kinetic-energy dopant beams and a high-flux chalcogen beam simultaneously, leading to substitutional doping with controlled dopant densiti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2021-12, Vol.15 (12), p.19225-19232
Hauptverfasser: Murai, Yuya, Zhang, Shaochun, Hotta, Takato, Liu, Zheng, Endo, Takahiko, Shimizu, Hiroshi, Miyata, Yasumitsu, Irisawa, Toshifumi, Gao, Yanlin, Maruyama, Mina, Okada, Susumu, Mogi, Hiroyuki, Sato, Tomohiro, Yoshida, Shoji, Shigekawa, Hidemi, Taniguchi, Takashi, Watanabe, Kenji, Canton-Vitoria, Ruben, Kitaura, Ryo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19232
container_issue 12
container_start_page 19225
container_title ACS nano
container_volume 15
creator Murai, Yuya
Zhang, Shaochun
Hotta, Takato
Liu, Zheng
Endo, Takahiko
Shimizu, Hiroshi
Miyata, Yasumitsu
Irisawa, Toshifumi
Gao, Yanlin
Maruyama, Mina
Okada, Susumu
Mogi, Hiroyuki
Sato, Tomohiro
Yoshida, Shoji
Shigekawa, Hidemi
Taniguchi, Takashi
Watanabe, Kenji
Canton-Vitoria, Ruben
Kitaura, Ryo
description We have developed a simple and straightforward way to realize controlled postdoping toward 2D transition metal dichalcogenides (TMDs). The key idea is to use low-kinetic-energy dopant beams and a high-flux chalcogen beam simultaneously, leading to substitutional doping with controlled dopant densities. Atomic-resolution transmission electron microscopy has revealed that dopant atoms injected toward TMDs are incorporated substitutionally into the hexagonal framework of TMDs. The electronic properties of doped TMDs (Nb-doped WSe2) have shown drastic change and p-type action with more than 2 orders of magnitude increase in current. Position-selective doping has also been demonstrated by the postdoping toward TMDs with a patterned mask on the surface. The postdoping method developed in this work can be a versatile tool for 2D-based next-generation electronics in the future.
doi_str_mv 10.1021/acsnano.1c04584
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2604833934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604833934</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-caed1a5df32f59087cccaa25a13d61827cb785303789f61adc0863536b7e08b43</originalsourceid><addsrcrecordid>eNqNkM9LwzAYhoMobk7P3qRHQbolTdOmeJLOXzBQcIq3kKapZLTJTFKG_70Zq_MkePrew_N938sDwDmCUwQTNOPCaa7NFAmYEpoegDEqcBZDmr0f7jNBI3Di3ApCktM8OwYjnNIUJwkdg-s3aR33qpXRs3E-npu10h-RNxtu62i5MfFcdVI7ZTRvoxfZKWF03QtvrDsFRw1vnTwb5gS83t0uy4d48XT_WN4sYo4x9rHgskac1A1OGlJAmgshOE8IR7jOEE1yUeWUYIhzWjQZ4rUI9THBWZVLSKsUT8Dl7u7ams9eOs865YRsW66l6R1LMphSjAu8RWc7VFjjnJUNW1vVcfvFEGRbY2wwxgZjYeNiON5Xnaz3_I-iAFztgI2sTOOEklrIPQYhzAmiBUQhpSjQ9P90qXxQb3Rpeu1_H4WKbGV6G4y7P3t_A-Bhl2E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604833934</pqid></control><display><type>article</type><title>Versatile Post-Doping toward Two-Dimensional Semiconductors</title><source>American Chemical Society Publications</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Murai, Yuya ; Zhang, Shaochun ; Hotta, Takato ; Liu, Zheng ; Endo, Takahiko ; Shimizu, Hiroshi ; Miyata, Yasumitsu ; Irisawa, Toshifumi ; Gao, Yanlin ; Maruyama, Mina ; Okada, Susumu ; Mogi, Hiroyuki ; Sato, Tomohiro ; Yoshida, Shoji ; Shigekawa, Hidemi ; Taniguchi, Takashi ; Watanabe, Kenji ; Canton-Vitoria, Ruben ; Kitaura, Ryo</creator><creatorcontrib>Murai, Yuya ; Zhang, Shaochun ; Hotta, Takato ; Liu, Zheng ; Endo, Takahiko ; Shimizu, Hiroshi ; Miyata, Yasumitsu ; Irisawa, Toshifumi ; Gao, Yanlin ; Maruyama, Mina ; Okada, Susumu ; Mogi, Hiroyuki ; Sato, Tomohiro ; Yoshida, Shoji ; Shigekawa, Hidemi ; Taniguchi, Takashi ; Watanabe, Kenji ; Canton-Vitoria, Ruben ; Kitaura, Ryo</creatorcontrib><description>We have developed a simple and straightforward way to realize controlled postdoping toward 2D transition metal dichalcogenides (TMDs). The key idea is to use low-kinetic-energy dopant beams and a high-flux chalcogen beam simultaneously, leading to substitutional doping with controlled dopant densities. Atomic-resolution transmission electron microscopy has revealed that dopant atoms injected toward TMDs are incorporated substitutionally into the hexagonal framework of TMDs. The electronic properties of doped TMDs (Nb-doped WSe2) have shown drastic change and p-type action with more than 2 orders of magnitude increase in current. Position-selective doping has also been demonstrated by the postdoping toward TMDs with a patterned mask on the surface. The postdoping method developed in this work can be a versatile tool for 2D-based next-generation electronics in the future.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.1c04584</identifier><identifier>PMID: 34843228</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; Materials Science ; Materials Science, Multidisciplinary ; Nanoscience &amp; Nanotechnology ; Physical Sciences ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Technology</subject><ispartof>ACS nano, 2021-12, Vol.15 (12), p.19225-19232</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>17</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000751890100041</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a333t-caed1a5df32f59087cccaa25a13d61827cb785303789f61adc0863536b7e08b43</citedby><cites>FETCH-LOGICAL-a333t-caed1a5df32f59087cccaa25a13d61827cb785303789f61adc0863536b7e08b43</cites><orcidid>0000-0002-4587-5391 ; 0000-0003-3701-8119 ; 0000-0001-8108-109X ; 0000-0002-1467-3105 ; 0000-0002-0783-3596 ; 0000-0002-2872-5543 ; 0000-0001-9095-7647 ; 0000-0001-9550-5148 ; 0000-0002-8801-7688</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.1c04584$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.1c04584$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,39263,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34843228$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Murai, Yuya</creatorcontrib><creatorcontrib>Zhang, Shaochun</creatorcontrib><creatorcontrib>Hotta, Takato</creatorcontrib><creatorcontrib>Liu, Zheng</creatorcontrib><creatorcontrib>Endo, Takahiko</creatorcontrib><creatorcontrib>Shimizu, Hiroshi</creatorcontrib><creatorcontrib>Miyata, Yasumitsu</creatorcontrib><creatorcontrib>Irisawa, Toshifumi</creatorcontrib><creatorcontrib>Gao, Yanlin</creatorcontrib><creatorcontrib>Maruyama, Mina</creatorcontrib><creatorcontrib>Okada, Susumu</creatorcontrib><creatorcontrib>Mogi, Hiroyuki</creatorcontrib><creatorcontrib>Sato, Tomohiro</creatorcontrib><creatorcontrib>Yoshida, Shoji</creatorcontrib><creatorcontrib>Shigekawa, Hidemi</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Canton-Vitoria, Ruben</creatorcontrib><creatorcontrib>Kitaura, Ryo</creatorcontrib><title>Versatile Post-Doping toward Two-Dimensional Semiconductors</title><title>ACS nano</title><addtitle>ACS NANO</addtitle><addtitle>ACS Nano</addtitle><description>We have developed a simple and straightforward way to realize controlled postdoping toward 2D transition metal dichalcogenides (TMDs). The key idea is to use low-kinetic-energy dopant beams and a high-flux chalcogen beam simultaneously, leading to substitutional doping with controlled dopant densities. Atomic-resolution transmission electron microscopy has revealed that dopant atoms injected toward TMDs are incorporated substitutionally into the hexagonal framework of TMDs. The electronic properties of doped TMDs (Nb-doped WSe2) have shown drastic change and p-type action with more than 2 orders of magnitude increase in current. Position-selective doping has also been demonstrated by the postdoping toward TMDs with a patterned mask on the surface. The postdoping method developed in this work can be a versatile tool for 2D-based next-generation electronics in the future.</description><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Technology</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkM9LwzAYhoMobk7P3qRHQbolTdOmeJLOXzBQcIq3kKapZLTJTFKG_70Zq_MkePrew_N938sDwDmCUwQTNOPCaa7NFAmYEpoegDEqcBZDmr0f7jNBI3Di3ApCktM8OwYjnNIUJwkdg-s3aR33qpXRs3E-npu10h-RNxtu62i5MfFcdVI7ZTRvoxfZKWF03QtvrDsFRw1vnTwb5gS83t0uy4d48XT_WN4sYo4x9rHgskac1A1OGlJAmgshOE8IR7jOEE1yUeWUYIhzWjQZ4rUI9THBWZVLSKsUT8Dl7u7ams9eOs865YRsW66l6R1LMphSjAu8RWc7VFjjnJUNW1vVcfvFEGRbY2wwxgZjYeNiON5Xnaz3_I-iAFztgI2sTOOEklrIPQYhzAmiBUQhpSjQ9P90qXxQb3Rpeu1_H4WKbGV6G4y7P3t_A-Bhl2E</recordid><startdate>20211228</startdate><enddate>20211228</enddate><creator>Murai, Yuya</creator><creator>Zhang, Shaochun</creator><creator>Hotta, Takato</creator><creator>Liu, Zheng</creator><creator>Endo, Takahiko</creator><creator>Shimizu, Hiroshi</creator><creator>Miyata, Yasumitsu</creator><creator>Irisawa, Toshifumi</creator><creator>Gao, Yanlin</creator><creator>Maruyama, Mina</creator><creator>Okada, Susumu</creator><creator>Mogi, Hiroyuki</creator><creator>Sato, Tomohiro</creator><creator>Yoshida, Shoji</creator><creator>Shigekawa, Hidemi</creator><creator>Taniguchi, Takashi</creator><creator>Watanabe, Kenji</creator><creator>Canton-Vitoria, Ruben</creator><creator>Kitaura, Ryo</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4587-5391</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0001-8108-109X</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0002-0783-3596</orcidid><orcidid>https://orcid.org/0000-0002-2872-5543</orcidid><orcidid>https://orcid.org/0000-0001-9095-7647</orcidid><orcidid>https://orcid.org/0000-0001-9550-5148</orcidid><orcidid>https://orcid.org/0000-0002-8801-7688</orcidid></search><sort><creationdate>20211228</creationdate><title>Versatile Post-Doping toward Two-Dimensional Semiconductors</title><author>Murai, Yuya ; Zhang, Shaochun ; Hotta, Takato ; Liu, Zheng ; Endo, Takahiko ; Shimizu, Hiroshi ; Miyata, Yasumitsu ; Irisawa, Toshifumi ; Gao, Yanlin ; Maruyama, Mina ; Okada, Susumu ; Mogi, Hiroyuki ; Sato, Tomohiro ; Yoshida, Shoji ; Shigekawa, Hidemi ; Taniguchi, Takashi ; Watanabe, Kenji ; Canton-Vitoria, Ruben ; Kitaura, Ryo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-caed1a5df32f59087cccaa25a13d61827cb785303789f61adc0863536b7e08b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murai, Yuya</creatorcontrib><creatorcontrib>Zhang, Shaochun</creatorcontrib><creatorcontrib>Hotta, Takato</creatorcontrib><creatorcontrib>Liu, Zheng</creatorcontrib><creatorcontrib>Endo, Takahiko</creatorcontrib><creatorcontrib>Shimizu, Hiroshi</creatorcontrib><creatorcontrib>Miyata, Yasumitsu</creatorcontrib><creatorcontrib>Irisawa, Toshifumi</creatorcontrib><creatorcontrib>Gao, Yanlin</creatorcontrib><creatorcontrib>Maruyama, Mina</creatorcontrib><creatorcontrib>Okada, Susumu</creatorcontrib><creatorcontrib>Mogi, Hiroyuki</creatorcontrib><creatorcontrib>Sato, Tomohiro</creatorcontrib><creatorcontrib>Yoshida, Shoji</creatorcontrib><creatorcontrib>Shigekawa, Hidemi</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Canton-Vitoria, Ruben</creatorcontrib><creatorcontrib>Kitaura, Ryo</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murai, Yuya</au><au>Zhang, Shaochun</au><au>Hotta, Takato</au><au>Liu, Zheng</au><au>Endo, Takahiko</au><au>Shimizu, Hiroshi</au><au>Miyata, Yasumitsu</au><au>Irisawa, Toshifumi</au><au>Gao, Yanlin</au><au>Maruyama, Mina</au><au>Okada, Susumu</au><au>Mogi, Hiroyuki</au><au>Sato, Tomohiro</au><au>Yoshida, Shoji</au><au>Shigekawa, Hidemi</au><au>Taniguchi, Takashi</au><au>Watanabe, Kenji</au><au>Canton-Vitoria, Ruben</au><au>Kitaura, Ryo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Versatile Post-Doping toward Two-Dimensional Semiconductors</atitle><jtitle>ACS nano</jtitle><stitle>ACS NANO</stitle><addtitle>ACS Nano</addtitle><date>2021-12-28</date><risdate>2021</risdate><volume>15</volume><issue>12</issue><spage>19225</spage><epage>19232</epage><pages>19225-19232</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>We have developed a simple and straightforward way to realize controlled postdoping toward 2D transition metal dichalcogenides (TMDs). The key idea is to use low-kinetic-energy dopant beams and a high-flux chalcogen beam simultaneously, leading to substitutional doping with controlled dopant densities. Atomic-resolution transmission electron microscopy has revealed that dopant atoms injected toward TMDs are incorporated substitutionally into the hexagonal framework of TMDs. The electronic properties of doped TMDs (Nb-doped WSe2) have shown drastic change and p-type action with more than 2 orders of magnitude increase in current. Position-selective doping has also been demonstrated by the postdoping toward TMDs with a patterned mask on the surface. The postdoping method developed in this work can be a versatile tool for 2D-based next-generation electronics in the future.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>34843228</pmid><doi>10.1021/acsnano.1c04584</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4587-5391</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0001-8108-109X</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0002-0783-3596</orcidid><orcidid>https://orcid.org/0000-0002-2872-5543</orcidid><orcidid>https://orcid.org/0000-0001-9095-7647</orcidid><orcidid>https://orcid.org/0000-0001-9550-5148</orcidid><orcidid>https://orcid.org/0000-0002-8801-7688</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2021-12, Vol.15 (12), p.19225-19232
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2604833934
source American Chemical Society Publications; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Chemistry
Chemistry, Multidisciplinary
Chemistry, Physical
Materials Science
Materials Science, Multidisciplinary
Nanoscience & Nanotechnology
Physical Sciences
Science & Technology
Science & Technology - Other Topics
Technology
title Versatile Post-Doping toward Two-Dimensional Semiconductors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T16%3A03%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Versatile%20Post-Doping%20toward%20Two-Dimensional%20Semiconductors&rft.jtitle=ACS%20nano&rft.au=Murai,%20Yuya&rft.date=2021-12-28&rft.volume=15&rft.issue=12&rft.spage=19225&rft.epage=19232&rft.pages=19225-19232&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.1c04584&rft_dat=%3Cproquest_acs_j%3E2604833934%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604833934&rft_id=info:pmid/34843228&rfr_iscdi=true