The pursuit of stability in halide perovskites: the monovalent cation and the key for surface and bulk self-healing
We find significant differences between degradation and healing at the surface or in the bulk for each of the different APbBr 3 single crystals (A = CH 3 NH 3 + , methylammonium (MA); HC(NH 2 ) 2 + , formamidinium (FA); and cesium, Cs + ). Using 1- and 2-photon microscopy and photobleaching we concl...
Gespeichert in:
Veröffentlicht in: | Materials horizons 2021-05, Vol.8 (5), p.157-1586 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1586 |
---|---|
container_issue | 5 |
container_start_page | 157 |
container_title | Materials horizons |
container_volume | 8 |
creator | Ceratti, D. R Cohen, A. V Tenne, R Rakita, Y Snarski, L Jasti, N. P Cremonesi, L Cohen, R Weitman, M Rosenhek-Goldian, I Kaplan-Ashiri, I Bendikov, T Kalchenko, V Elbaum, M Potenza, M. A. C Kronik, L Hodes, G Cahen, D |
description | We find significant differences between degradation and healing at the surface or in the bulk for each of the different APbBr
3
single crystals (A = CH
3
NH
3
+
, methylammonium (MA); HC(NH
2
)
2
+
, formamidinium (FA); and cesium, Cs
+
). Using 1- and 2-photon microscopy and photobleaching we conclude that kinetics dominate the surface and thermodynamics the bulk stability. Fluorescence-lifetime imaging microscopy, as well as results from several other methods, relate the (damaged) state of the halide perovskite (HaP) after photobleaching to its modified optical and electronic properties. The A cation type strongly influences both the kinetics and the thermodynamics of recovery and degradation: FA heals best the bulk material with faster self-healing; Cs
+
protects the surface best, being the least volatile of the A cations and possibly through O-passivation; MA passivates defects
via
methylamine from photo-dissociation, which binds to Pb
2+
. DFT simulations provide insight into the passivating role of MA, and also indicate the importance of the Br
3
−
defect as well as predicts its stability. The occurrence and rate of self-healing are suggested to explain the low effective defect density in the HaPs and through this, their excellent performance. These results rationalize the use of mixed A-cation materials for optimizing both solar cell stability and overall performance of HaP-based devices, and provide a basis for designing new HaP variants.
The fine equilibrium between photodamage and self-healing determines the defect density in halide perovskites. Here we analyze the chemistry of the processes on the surface and in the bulk of APbBr3 single crystals. (A = MA, FA, Cs). |
doi_str_mv | 10.1039/d1mh00006c |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2604832867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2524671528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-d180ce927d4ad0fe0afdc2c5b711130fed0e3631144f90e30cccfd9fa70ef2273</originalsourceid><addsrcrecordid>eNpd0UtLAzEQB_BFFCy1F-9CwIsIq3ns05vUR4WKl3pe0mTipt0mNckW-u1NW6lgLhlmfgwD_yS5JPiOYFbfS7JqcXyFOEkGFOckLVienx7rrDxPRt4vIiEsy3GFB4mftYDWvfO9Dsgq5AOf606HLdIGtbzTMo7B2Y1f6gD-AYXoV9bYDe_ABCR40NYgbuR-soQtUtYh3zvFBez7875bIg-dSluIC83XRXKmeOdh9PsPk8-X59l4kk4_Xt_Gj9NUsKoMqSQVFlDTUmZcYgWYKymoyOclIYTFhsTACkZIlqk6llgIoWSteIlBUVqyYXJz2Lt29rsHH5qV9gK6jhuwvW9ogbOK0arY0et_dGF7Z-J1Dc1pVpQkp1VUtwclnPXegWrWTq-42zYEN7sImifyPtlHMI746oCdF0f3FxH7ARMOg6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524671528</pqid></control><display><type>article</type><title>The pursuit of stability in halide perovskites: the monovalent cation and the key for surface and bulk self-healing</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Ceratti, D. R ; Cohen, A. V ; Tenne, R ; Rakita, Y ; Snarski, L ; Jasti, N. P ; Cremonesi, L ; Cohen, R ; Weitman, M ; Rosenhek-Goldian, I ; Kaplan-Ashiri, I ; Bendikov, T ; Kalchenko, V ; Elbaum, M ; Potenza, M. A. C ; Kronik, L ; Hodes, G ; Cahen, D</creator><creatorcontrib>Ceratti, D. R ; Cohen, A. V ; Tenne, R ; Rakita, Y ; Snarski, L ; Jasti, N. P ; Cremonesi, L ; Cohen, R ; Weitman, M ; Rosenhek-Goldian, I ; Kaplan-Ashiri, I ; Bendikov, T ; Kalchenko, V ; Elbaum, M ; Potenza, M. A. C ; Kronik, L ; Hodes, G ; Cahen, D</creatorcontrib><description>We find significant differences between degradation and healing at the surface or in the bulk for each of the different APbBr
3
single crystals (A = CH
3
NH
3
+
, methylammonium (MA); HC(NH
2
)
2
+
, formamidinium (FA); and cesium, Cs
+
). Using 1- and 2-photon microscopy and photobleaching we conclude that kinetics dominate the surface and thermodynamics the bulk stability. Fluorescence-lifetime imaging microscopy, as well as results from several other methods, relate the (damaged) state of the halide perovskite (HaP) after photobleaching to its modified optical and electronic properties. The A cation type strongly influences both the kinetics and the thermodynamics of recovery and degradation: FA heals best the bulk material with faster self-healing; Cs
+
protects the surface best, being the least volatile of the A cations and possibly through O-passivation; MA passivates defects
via
methylamine from photo-dissociation, which binds to Pb
2+
. DFT simulations provide insight into the passivating role of MA, and also indicate the importance of the Br
3
−
defect as well as predicts its stability. The occurrence and rate of self-healing are suggested to explain the low effective defect density in the HaPs and through this, their excellent performance. These results rationalize the use of mixed A-cation materials for optimizing both solar cell stability and overall performance of HaP-based devices, and provide a basis for designing new HaP variants.
The fine equilibrium between photodamage and self-healing determines the defect density in halide perovskites. Here we analyze the chemistry of the processes on the surface and in the bulk of APbBr3 single crystals. (A = MA, FA, Cs).</description><identifier>ISSN: 2051-6347</identifier><identifier>EISSN: 2051-6355</identifier><identifier>DOI: 10.1039/d1mh00006c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Cations ; Cesium ; Crystal defects ; Degradation ; Fluorescence ; Kinetics ; Microscopy ; Optical properties ; Perovskites ; Photovoltaic cells ; Self healing materials ; Single crystals ; Solar cells ; Surface stability ; Thermodynamics</subject><ispartof>Materials horizons, 2021-05, Vol.8 (5), p.157-1586</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-d180ce927d4ad0fe0afdc2c5b711130fed0e3631144f90e30cccfd9fa70ef2273</citedby><cites>FETCH-LOGICAL-c387t-d180ce927d4ad0fe0afdc2c5b711130fed0e3631144f90e30cccfd9fa70ef2273</cites><orcidid>0000-0002-4276-0660 ; 0000-0001-8118-5446 ; 0000-0001-6791-8658 ; 0000-0002-4496-0674</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ceratti, D. R</creatorcontrib><creatorcontrib>Cohen, A. V</creatorcontrib><creatorcontrib>Tenne, R</creatorcontrib><creatorcontrib>Rakita, Y</creatorcontrib><creatorcontrib>Snarski, L</creatorcontrib><creatorcontrib>Jasti, N. P</creatorcontrib><creatorcontrib>Cremonesi, L</creatorcontrib><creatorcontrib>Cohen, R</creatorcontrib><creatorcontrib>Weitman, M</creatorcontrib><creatorcontrib>Rosenhek-Goldian, I</creatorcontrib><creatorcontrib>Kaplan-Ashiri, I</creatorcontrib><creatorcontrib>Bendikov, T</creatorcontrib><creatorcontrib>Kalchenko, V</creatorcontrib><creatorcontrib>Elbaum, M</creatorcontrib><creatorcontrib>Potenza, M. A. C</creatorcontrib><creatorcontrib>Kronik, L</creatorcontrib><creatorcontrib>Hodes, G</creatorcontrib><creatorcontrib>Cahen, D</creatorcontrib><title>The pursuit of stability in halide perovskites: the monovalent cation and the key for surface and bulk self-healing</title><title>Materials horizons</title><description>We find significant differences between degradation and healing at the surface or in the bulk for each of the different APbBr
3
single crystals (A = CH
3
NH
3
+
, methylammonium (MA); HC(NH
2
)
2
+
, formamidinium (FA); and cesium, Cs
+
). Using 1- and 2-photon microscopy and photobleaching we conclude that kinetics dominate the surface and thermodynamics the bulk stability. Fluorescence-lifetime imaging microscopy, as well as results from several other methods, relate the (damaged) state of the halide perovskite (HaP) after photobleaching to its modified optical and electronic properties. The A cation type strongly influences both the kinetics and the thermodynamics of recovery and degradation: FA heals best the bulk material with faster self-healing; Cs
+
protects the surface best, being the least volatile of the A cations and possibly through O-passivation; MA passivates defects
via
methylamine from photo-dissociation, which binds to Pb
2+
. DFT simulations provide insight into the passivating role of MA, and also indicate the importance of the Br
3
−
defect as well as predicts its stability. The occurrence and rate of self-healing are suggested to explain the low effective defect density in the HaPs and through this, their excellent performance. These results rationalize the use of mixed A-cation materials for optimizing both solar cell stability and overall performance of HaP-based devices, and provide a basis for designing new HaP variants.
The fine equilibrium between photodamage and self-healing determines the defect density in halide perovskites. Here we analyze the chemistry of the processes on the surface and in the bulk of APbBr3 single crystals. (A = MA, FA, Cs).</description><subject>Cations</subject><subject>Cesium</subject><subject>Crystal defects</subject><subject>Degradation</subject><subject>Fluorescence</subject><subject>Kinetics</subject><subject>Microscopy</subject><subject>Optical properties</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Self healing materials</subject><subject>Single crystals</subject><subject>Solar cells</subject><subject>Surface stability</subject><subject>Thermodynamics</subject><issn>2051-6347</issn><issn>2051-6355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0UtLAzEQB_BFFCy1F-9CwIsIq3ns05vUR4WKl3pe0mTipt0mNckW-u1NW6lgLhlmfgwD_yS5JPiOYFbfS7JqcXyFOEkGFOckLVienx7rrDxPRt4vIiEsy3GFB4mftYDWvfO9Dsgq5AOf606HLdIGtbzTMo7B2Y1f6gD-AYXoV9bYDe_ABCR40NYgbuR-soQtUtYh3zvFBez7875bIg-dSluIC83XRXKmeOdh9PsPk8-X59l4kk4_Xt_Gj9NUsKoMqSQVFlDTUmZcYgWYKymoyOclIYTFhsTACkZIlqk6llgIoWSteIlBUVqyYXJz2Lt29rsHH5qV9gK6jhuwvW9ogbOK0arY0et_dGF7Z-J1Dc1pVpQkp1VUtwclnPXegWrWTq-42zYEN7sImifyPtlHMI746oCdF0f3FxH7ARMOg6w</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Ceratti, D. R</creator><creator>Cohen, A. V</creator><creator>Tenne, R</creator><creator>Rakita, Y</creator><creator>Snarski, L</creator><creator>Jasti, N. P</creator><creator>Cremonesi, L</creator><creator>Cohen, R</creator><creator>Weitman, M</creator><creator>Rosenhek-Goldian, I</creator><creator>Kaplan-Ashiri, I</creator><creator>Bendikov, T</creator><creator>Kalchenko, V</creator><creator>Elbaum, M</creator><creator>Potenza, M. A. C</creator><creator>Kronik, L</creator><creator>Hodes, G</creator><creator>Cahen, D</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4276-0660</orcidid><orcidid>https://orcid.org/0000-0001-8118-5446</orcidid><orcidid>https://orcid.org/0000-0001-6791-8658</orcidid><orcidid>https://orcid.org/0000-0002-4496-0674</orcidid></search><sort><creationdate>20210501</creationdate><title>The pursuit of stability in halide perovskites: the monovalent cation and the key for surface and bulk self-healing</title><author>Ceratti, D. R ; Cohen, A. V ; Tenne, R ; Rakita, Y ; Snarski, L ; Jasti, N. P ; Cremonesi, L ; Cohen, R ; Weitman, M ; Rosenhek-Goldian, I ; Kaplan-Ashiri, I ; Bendikov, T ; Kalchenko, V ; Elbaum, M ; Potenza, M. A. C ; Kronik, L ; Hodes, G ; Cahen, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-d180ce927d4ad0fe0afdc2c5b711130fed0e3631144f90e30cccfd9fa70ef2273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cations</topic><topic>Cesium</topic><topic>Crystal defects</topic><topic>Degradation</topic><topic>Fluorescence</topic><topic>Kinetics</topic><topic>Microscopy</topic><topic>Optical properties</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Self healing materials</topic><topic>Single crystals</topic><topic>Solar cells</topic><topic>Surface stability</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ceratti, D. R</creatorcontrib><creatorcontrib>Cohen, A. V</creatorcontrib><creatorcontrib>Tenne, R</creatorcontrib><creatorcontrib>Rakita, Y</creatorcontrib><creatorcontrib>Snarski, L</creatorcontrib><creatorcontrib>Jasti, N. P</creatorcontrib><creatorcontrib>Cremonesi, L</creatorcontrib><creatorcontrib>Cohen, R</creatorcontrib><creatorcontrib>Weitman, M</creatorcontrib><creatorcontrib>Rosenhek-Goldian, I</creatorcontrib><creatorcontrib>Kaplan-Ashiri, I</creatorcontrib><creatorcontrib>Bendikov, T</creatorcontrib><creatorcontrib>Kalchenko, V</creatorcontrib><creatorcontrib>Elbaum, M</creatorcontrib><creatorcontrib>Potenza, M. A. C</creatorcontrib><creatorcontrib>Kronik, L</creatorcontrib><creatorcontrib>Hodes, G</creatorcontrib><creatorcontrib>Cahen, D</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Materials horizons</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ceratti, D. R</au><au>Cohen, A. V</au><au>Tenne, R</au><au>Rakita, Y</au><au>Snarski, L</au><au>Jasti, N. P</au><au>Cremonesi, L</au><au>Cohen, R</au><au>Weitman, M</au><au>Rosenhek-Goldian, I</au><au>Kaplan-Ashiri, I</au><au>Bendikov, T</au><au>Kalchenko, V</au><au>Elbaum, M</au><au>Potenza, M. A. C</au><au>Kronik, L</au><au>Hodes, G</au><au>Cahen, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The pursuit of stability in halide perovskites: the monovalent cation and the key for surface and bulk self-healing</atitle><jtitle>Materials horizons</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>8</volume><issue>5</issue><spage>157</spage><epage>1586</epage><pages>157-1586</pages><issn>2051-6347</issn><eissn>2051-6355</eissn><abstract>We find significant differences between degradation and healing at the surface or in the bulk for each of the different APbBr
3
single crystals (A = CH
3
NH
3
+
, methylammonium (MA); HC(NH
2
)
2
+
, formamidinium (FA); and cesium, Cs
+
). Using 1- and 2-photon microscopy and photobleaching we conclude that kinetics dominate the surface and thermodynamics the bulk stability. Fluorescence-lifetime imaging microscopy, as well as results from several other methods, relate the (damaged) state of the halide perovskite (HaP) after photobleaching to its modified optical and electronic properties. The A cation type strongly influences both the kinetics and the thermodynamics of recovery and degradation: FA heals best the bulk material with faster self-healing; Cs
+
protects the surface best, being the least volatile of the A cations and possibly through O-passivation; MA passivates defects
via
methylamine from photo-dissociation, which binds to Pb
2+
. DFT simulations provide insight into the passivating role of MA, and also indicate the importance of the Br
3
−
defect as well as predicts its stability. The occurrence and rate of self-healing are suggested to explain the low effective defect density in the HaPs and through this, their excellent performance. These results rationalize the use of mixed A-cation materials for optimizing both solar cell stability and overall performance of HaP-based devices, and provide a basis for designing new HaP variants.
The fine equilibrium between photodamage and self-healing determines the defect density in halide perovskites. Here we analyze the chemistry of the processes on the surface and in the bulk of APbBr3 single crystals. (A = MA, FA, Cs).</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1mh00006c</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-4276-0660</orcidid><orcidid>https://orcid.org/0000-0001-8118-5446</orcidid><orcidid>https://orcid.org/0000-0001-6791-8658</orcidid><orcidid>https://orcid.org/0000-0002-4496-0674</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2051-6347 |
ispartof | Materials horizons, 2021-05, Vol.8 (5), p.157-1586 |
issn | 2051-6347 2051-6355 |
language | eng |
recordid | cdi_proquest_miscellaneous_2604832867 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Cations Cesium Crystal defects Degradation Fluorescence Kinetics Microscopy Optical properties Perovskites Photovoltaic cells Self healing materials Single crystals Solar cells Surface stability Thermodynamics |
title | The pursuit of stability in halide perovskites: the monovalent cation and the key for surface and bulk self-healing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A31%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20pursuit%20of%20stability%20in%20halide%20perovskites:%20the%20monovalent%20cation%20and%20the%20key%20for%20surface%20and%20bulk%20self-healing&rft.jtitle=Materials%20horizons&rft.au=Ceratti,%20D.%20R&rft.date=2021-05-01&rft.volume=8&rft.issue=5&rft.spage=157&rft.epage=1586&rft.pages=157-1586&rft.issn=2051-6347&rft.eissn=2051-6355&rft_id=info:doi/10.1039/d1mh00006c&rft_dat=%3Cproquest_cross%3E2524671528%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2524671528&rft_id=info:pmid/&rfr_iscdi=true |