The pursuit of stability in halide perovskites: the monovalent cation and the key for surface and bulk self-healing

We find significant differences between degradation and healing at the surface or in the bulk for each of the different APbBr 3 single crystals (A = CH 3 NH 3 + , methylammonium (MA); HC(NH 2 ) 2 + , formamidinium (FA); and cesium, Cs + ). Using 1- and 2-photon microscopy and photobleaching we concl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials horizons 2021-05, Vol.8 (5), p.157-1586
Hauptverfasser: Ceratti, D. R, Cohen, A. V, Tenne, R, Rakita, Y, Snarski, L, Jasti, N. P, Cremonesi, L, Cohen, R, Weitman, M, Rosenhek-Goldian, I, Kaplan-Ashiri, I, Bendikov, T, Kalchenko, V, Elbaum, M, Potenza, M. A. C, Kronik, L, Hodes, G, Cahen, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1586
container_issue 5
container_start_page 157
container_title Materials horizons
container_volume 8
creator Ceratti, D. R
Cohen, A. V
Tenne, R
Rakita, Y
Snarski, L
Jasti, N. P
Cremonesi, L
Cohen, R
Weitman, M
Rosenhek-Goldian, I
Kaplan-Ashiri, I
Bendikov, T
Kalchenko, V
Elbaum, M
Potenza, M. A. C
Kronik, L
Hodes, G
Cahen, D
description We find significant differences between degradation and healing at the surface or in the bulk for each of the different APbBr 3 single crystals (A = CH 3 NH 3 + , methylammonium (MA); HC(NH 2 ) 2 + , formamidinium (FA); and cesium, Cs + ). Using 1- and 2-photon microscopy and photobleaching we conclude that kinetics dominate the surface and thermodynamics the bulk stability. Fluorescence-lifetime imaging microscopy, as well as results from several other methods, relate the (damaged) state of the halide perovskite (HaP) after photobleaching to its modified optical and electronic properties. The A cation type strongly influences both the kinetics and the thermodynamics of recovery and degradation: FA heals best the bulk material with faster self-healing; Cs + protects the surface best, being the least volatile of the A cations and possibly through O-passivation; MA passivates defects via methylamine from photo-dissociation, which binds to Pb 2+ . DFT simulations provide insight into the passivating role of MA, and also indicate the importance of the Br 3 − defect as well as predicts its stability. The occurrence and rate of self-healing are suggested to explain the low effective defect density in the HaPs and through this, their excellent performance. These results rationalize the use of mixed A-cation materials for optimizing both solar cell stability and overall performance of HaP-based devices, and provide a basis for designing new HaP variants. The fine equilibrium between photodamage and self-healing determines the defect density in halide perovskites. Here we analyze the chemistry of the processes on the surface and in the bulk of APbBr3 single crystals. (A = MA, FA, Cs).
doi_str_mv 10.1039/d1mh00006c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2604832867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2524671528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-d180ce927d4ad0fe0afdc2c5b711130fed0e3631144f90e30cccfd9fa70ef2273</originalsourceid><addsrcrecordid>eNpd0UtLAzEQB_BFFCy1F-9CwIsIq3ns05vUR4WKl3pe0mTipt0mNckW-u1NW6lgLhlmfgwD_yS5JPiOYFbfS7JqcXyFOEkGFOckLVienx7rrDxPRt4vIiEsy3GFB4mftYDWvfO9Dsgq5AOf606HLdIGtbzTMo7B2Y1f6gD-AYXoV9bYDe_ABCR40NYgbuR-soQtUtYh3zvFBez7875bIg-dSluIC83XRXKmeOdh9PsPk8-X59l4kk4_Xt_Gj9NUsKoMqSQVFlDTUmZcYgWYKymoyOclIYTFhsTACkZIlqk6llgIoWSteIlBUVqyYXJz2Lt29rsHH5qV9gK6jhuwvW9ogbOK0arY0et_dGF7Z-J1Dc1pVpQkp1VUtwclnPXegWrWTq-42zYEN7sImifyPtlHMI746oCdF0f3FxH7ARMOg6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524671528</pqid></control><display><type>article</type><title>The pursuit of stability in halide perovskites: the monovalent cation and the key for surface and bulk self-healing</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Ceratti, D. R ; Cohen, A. V ; Tenne, R ; Rakita, Y ; Snarski, L ; Jasti, N. P ; Cremonesi, L ; Cohen, R ; Weitman, M ; Rosenhek-Goldian, I ; Kaplan-Ashiri, I ; Bendikov, T ; Kalchenko, V ; Elbaum, M ; Potenza, M. A. C ; Kronik, L ; Hodes, G ; Cahen, D</creator><creatorcontrib>Ceratti, D. R ; Cohen, A. V ; Tenne, R ; Rakita, Y ; Snarski, L ; Jasti, N. P ; Cremonesi, L ; Cohen, R ; Weitman, M ; Rosenhek-Goldian, I ; Kaplan-Ashiri, I ; Bendikov, T ; Kalchenko, V ; Elbaum, M ; Potenza, M. A. C ; Kronik, L ; Hodes, G ; Cahen, D</creatorcontrib><description>We find significant differences between degradation and healing at the surface or in the bulk for each of the different APbBr 3 single crystals (A = CH 3 NH 3 + , methylammonium (MA); HC(NH 2 ) 2 + , formamidinium (FA); and cesium, Cs + ). Using 1- and 2-photon microscopy and photobleaching we conclude that kinetics dominate the surface and thermodynamics the bulk stability. Fluorescence-lifetime imaging microscopy, as well as results from several other methods, relate the (damaged) state of the halide perovskite (HaP) after photobleaching to its modified optical and electronic properties. The A cation type strongly influences both the kinetics and the thermodynamics of recovery and degradation: FA heals best the bulk material with faster self-healing; Cs + protects the surface best, being the least volatile of the A cations and possibly through O-passivation; MA passivates defects via methylamine from photo-dissociation, which binds to Pb 2+ . DFT simulations provide insight into the passivating role of MA, and also indicate the importance of the Br 3 − defect as well as predicts its stability. The occurrence and rate of self-healing are suggested to explain the low effective defect density in the HaPs and through this, their excellent performance. These results rationalize the use of mixed A-cation materials for optimizing both solar cell stability and overall performance of HaP-based devices, and provide a basis for designing new HaP variants. The fine equilibrium between photodamage and self-healing determines the defect density in halide perovskites. Here we analyze the chemistry of the processes on the surface and in the bulk of APbBr3 single crystals. (A = MA, FA, Cs).</description><identifier>ISSN: 2051-6347</identifier><identifier>EISSN: 2051-6355</identifier><identifier>DOI: 10.1039/d1mh00006c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Cations ; Cesium ; Crystal defects ; Degradation ; Fluorescence ; Kinetics ; Microscopy ; Optical properties ; Perovskites ; Photovoltaic cells ; Self healing materials ; Single crystals ; Solar cells ; Surface stability ; Thermodynamics</subject><ispartof>Materials horizons, 2021-05, Vol.8 (5), p.157-1586</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-d180ce927d4ad0fe0afdc2c5b711130fed0e3631144f90e30cccfd9fa70ef2273</citedby><cites>FETCH-LOGICAL-c387t-d180ce927d4ad0fe0afdc2c5b711130fed0e3631144f90e30cccfd9fa70ef2273</cites><orcidid>0000-0002-4276-0660 ; 0000-0001-8118-5446 ; 0000-0001-6791-8658 ; 0000-0002-4496-0674</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ceratti, D. R</creatorcontrib><creatorcontrib>Cohen, A. V</creatorcontrib><creatorcontrib>Tenne, R</creatorcontrib><creatorcontrib>Rakita, Y</creatorcontrib><creatorcontrib>Snarski, L</creatorcontrib><creatorcontrib>Jasti, N. P</creatorcontrib><creatorcontrib>Cremonesi, L</creatorcontrib><creatorcontrib>Cohen, R</creatorcontrib><creatorcontrib>Weitman, M</creatorcontrib><creatorcontrib>Rosenhek-Goldian, I</creatorcontrib><creatorcontrib>Kaplan-Ashiri, I</creatorcontrib><creatorcontrib>Bendikov, T</creatorcontrib><creatorcontrib>Kalchenko, V</creatorcontrib><creatorcontrib>Elbaum, M</creatorcontrib><creatorcontrib>Potenza, M. A. C</creatorcontrib><creatorcontrib>Kronik, L</creatorcontrib><creatorcontrib>Hodes, G</creatorcontrib><creatorcontrib>Cahen, D</creatorcontrib><title>The pursuit of stability in halide perovskites: the monovalent cation and the key for surface and bulk self-healing</title><title>Materials horizons</title><description>We find significant differences between degradation and healing at the surface or in the bulk for each of the different APbBr 3 single crystals (A = CH 3 NH 3 + , methylammonium (MA); HC(NH 2 ) 2 + , formamidinium (FA); and cesium, Cs + ). Using 1- and 2-photon microscopy and photobleaching we conclude that kinetics dominate the surface and thermodynamics the bulk stability. Fluorescence-lifetime imaging microscopy, as well as results from several other methods, relate the (damaged) state of the halide perovskite (HaP) after photobleaching to its modified optical and electronic properties. The A cation type strongly influences both the kinetics and the thermodynamics of recovery and degradation: FA heals best the bulk material with faster self-healing; Cs + protects the surface best, being the least volatile of the A cations and possibly through O-passivation; MA passivates defects via methylamine from photo-dissociation, which binds to Pb 2+ . DFT simulations provide insight into the passivating role of MA, and also indicate the importance of the Br 3 − defect as well as predicts its stability. The occurrence and rate of self-healing are suggested to explain the low effective defect density in the HaPs and through this, their excellent performance. These results rationalize the use of mixed A-cation materials for optimizing both solar cell stability and overall performance of HaP-based devices, and provide a basis for designing new HaP variants. The fine equilibrium between photodamage and self-healing determines the defect density in halide perovskites. Here we analyze the chemistry of the processes on the surface and in the bulk of APbBr3 single crystals. (A = MA, FA, Cs).</description><subject>Cations</subject><subject>Cesium</subject><subject>Crystal defects</subject><subject>Degradation</subject><subject>Fluorescence</subject><subject>Kinetics</subject><subject>Microscopy</subject><subject>Optical properties</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Self healing materials</subject><subject>Single crystals</subject><subject>Solar cells</subject><subject>Surface stability</subject><subject>Thermodynamics</subject><issn>2051-6347</issn><issn>2051-6355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0UtLAzEQB_BFFCy1F-9CwIsIq3ns05vUR4WKl3pe0mTipt0mNckW-u1NW6lgLhlmfgwD_yS5JPiOYFbfS7JqcXyFOEkGFOckLVienx7rrDxPRt4vIiEsy3GFB4mftYDWvfO9Dsgq5AOf606HLdIGtbzTMo7B2Y1f6gD-AYXoV9bYDe_ABCR40NYgbuR-soQtUtYh3zvFBez7875bIg-dSluIC83XRXKmeOdh9PsPk8-X59l4kk4_Xt_Gj9NUsKoMqSQVFlDTUmZcYgWYKymoyOclIYTFhsTACkZIlqk6llgIoWSteIlBUVqyYXJz2Lt29rsHH5qV9gK6jhuwvW9ogbOK0arY0et_dGF7Z-J1Dc1pVpQkp1VUtwclnPXegWrWTq-42zYEN7sImifyPtlHMI746oCdF0f3FxH7ARMOg6w</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Ceratti, D. R</creator><creator>Cohen, A. V</creator><creator>Tenne, R</creator><creator>Rakita, Y</creator><creator>Snarski, L</creator><creator>Jasti, N. P</creator><creator>Cremonesi, L</creator><creator>Cohen, R</creator><creator>Weitman, M</creator><creator>Rosenhek-Goldian, I</creator><creator>Kaplan-Ashiri, I</creator><creator>Bendikov, T</creator><creator>Kalchenko, V</creator><creator>Elbaum, M</creator><creator>Potenza, M. A. C</creator><creator>Kronik, L</creator><creator>Hodes, G</creator><creator>Cahen, D</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4276-0660</orcidid><orcidid>https://orcid.org/0000-0001-8118-5446</orcidid><orcidid>https://orcid.org/0000-0001-6791-8658</orcidid><orcidid>https://orcid.org/0000-0002-4496-0674</orcidid></search><sort><creationdate>20210501</creationdate><title>The pursuit of stability in halide perovskites: the monovalent cation and the key for surface and bulk self-healing</title><author>Ceratti, D. R ; Cohen, A. V ; Tenne, R ; Rakita, Y ; Snarski, L ; Jasti, N. P ; Cremonesi, L ; Cohen, R ; Weitman, M ; Rosenhek-Goldian, I ; Kaplan-Ashiri, I ; Bendikov, T ; Kalchenko, V ; Elbaum, M ; Potenza, M. A. C ; Kronik, L ; Hodes, G ; Cahen, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-d180ce927d4ad0fe0afdc2c5b711130fed0e3631144f90e30cccfd9fa70ef2273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cations</topic><topic>Cesium</topic><topic>Crystal defects</topic><topic>Degradation</topic><topic>Fluorescence</topic><topic>Kinetics</topic><topic>Microscopy</topic><topic>Optical properties</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Self healing materials</topic><topic>Single crystals</topic><topic>Solar cells</topic><topic>Surface stability</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ceratti, D. R</creatorcontrib><creatorcontrib>Cohen, A. V</creatorcontrib><creatorcontrib>Tenne, R</creatorcontrib><creatorcontrib>Rakita, Y</creatorcontrib><creatorcontrib>Snarski, L</creatorcontrib><creatorcontrib>Jasti, N. P</creatorcontrib><creatorcontrib>Cremonesi, L</creatorcontrib><creatorcontrib>Cohen, R</creatorcontrib><creatorcontrib>Weitman, M</creatorcontrib><creatorcontrib>Rosenhek-Goldian, I</creatorcontrib><creatorcontrib>Kaplan-Ashiri, I</creatorcontrib><creatorcontrib>Bendikov, T</creatorcontrib><creatorcontrib>Kalchenko, V</creatorcontrib><creatorcontrib>Elbaum, M</creatorcontrib><creatorcontrib>Potenza, M. A. C</creatorcontrib><creatorcontrib>Kronik, L</creatorcontrib><creatorcontrib>Hodes, G</creatorcontrib><creatorcontrib>Cahen, D</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Materials horizons</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ceratti, D. R</au><au>Cohen, A. V</au><au>Tenne, R</au><au>Rakita, Y</au><au>Snarski, L</au><au>Jasti, N. P</au><au>Cremonesi, L</au><au>Cohen, R</au><au>Weitman, M</au><au>Rosenhek-Goldian, I</au><au>Kaplan-Ashiri, I</au><au>Bendikov, T</au><au>Kalchenko, V</au><au>Elbaum, M</au><au>Potenza, M. A. C</au><au>Kronik, L</au><au>Hodes, G</au><au>Cahen, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The pursuit of stability in halide perovskites: the monovalent cation and the key for surface and bulk self-healing</atitle><jtitle>Materials horizons</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>8</volume><issue>5</issue><spage>157</spage><epage>1586</epage><pages>157-1586</pages><issn>2051-6347</issn><eissn>2051-6355</eissn><abstract>We find significant differences between degradation and healing at the surface or in the bulk for each of the different APbBr 3 single crystals (A = CH 3 NH 3 + , methylammonium (MA); HC(NH 2 ) 2 + , formamidinium (FA); and cesium, Cs + ). Using 1- and 2-photon microscopy and photobleaching we conclude that kinetics dominate the surface and thermodynamics the bulk stability. Fluorescence-lifetime imaging microscopy, as well as results from several other methods, relate the (damaged) state of the halide perovskite (HaP) after photobleaching to its modified optical and electronic properties. The A cation type strongly influences both the kinetics and the thermodynamics of recovery and degradation: FA heals best the bulk material with faster self-healing; Cs + protects the surface best, being the least volatile of the A cations and possibly through O-passivation; MA passivates defects via methylamine from photo-dissociation, which binds to Pb 2+ . DFT simulations provide insight into the passivating role of MA, and also indicate the importance of the Br 3 − defect as well as predicts its stability. The occurrence and rate of self-healing are suggested to explain the low effective defect density in the HaPs and through this, their excellent performance. These results rationalize the use of mixed A-cation materials for optimizing both solar cell stability and overall performance of HaP-based devices, and provide a basis for designing new HaP variants. The fine equilibrium between photodamage and self-healing determines the defect density in halide perovskites. Here we analyze the chemistry of the processes on the surface and in the bulk of APbBr3 single crystals. (A = MA, FA, Cs).</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1mh00006c</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-4276-0660</orcidid><orcidid>https://orcid.org/0000-0001-8118-5446</orcidid><orcidid>https://orcid.org/0000-0001-6791-8658</orcidid><orcidid>https://orcid.org/0000-0002-4496-0674</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2051-6347
ispartof Materials horizons, 2021-05, Vol.8 (5), p.157-1586
issn 2051-6347
2051-6355
language eng
recordid cdi_proquest_miscellaneous_2604832867
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Cations
Cesium
Crystal defects
Degradation
Fluorescence
Kinetics
Microscopy
Optical properties
Perovskites
Photovoltaic cells
Self healing materials
Single crystals
Solar cells
Surface stability
Thermodynamics
title The pursuit of stability in halide perovskites: the monovalent cation and the key for surface and bulk self-healing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A31%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20pursuit%20of%20stability%20in%20halide%20perovskites:%20the%20monovalent%20cation%20and%20the%20key%20for%20surface%20and%20bulk%20self-healing&rft.jtitle=Materials%20horizons&rft.au=Ceratti,%20D.%20R&rft.date=2021-05-01&rft.volume=8&rft.issue=5&rft.spage=157&rft.epage=1586&rft.pages=157-1586&rft.issn=2051-6347&rft.eissn=2051-6355&rft_id=info:doi/10.1039/d1mh00006c&rft_dat=%3Cproquest_cross%3E2524671528%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2524671528&rft_id=info:pmid/&rfr_iscdi=true