Influence of seawater acidification on biochemical composition and oxidative status of green algae Ulva compressa

The sequestration of elevated atmospheric CO2 levels in seawater results in increasing acidification of oceans and it is unclear what the consequences of this will be on seaweed ecophysiology and ecological services they provide in the coastal ecosystem. In the present study, we examined the physiol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2022-02, Vol.806, p.150445-150445, Article 150445
Hauptverfasser: Vinuganesh, A., Kumar, Amit, Prakash, S., Alotaibi, Modhi O., Saleh, Ahmed M., Mohammed, Afrah E., Beemster, Gerrit T.S., AbdElgawad, Hamada
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The sequestration of elevated atmospheric CO2 levels in seawater results in increasing acidification of oceans and it is unclear what the consequences of this will be on seaweed ecophysiology and ecological services they provide in the coastal ecosystem. In the present study, we examined the physiological and biochemical response of intertidal green seaweed Ulva compressa to elevated pCO2 induced acidification. The green seaweed was exposed to control (pH 8.1) and acidified (pH 7.7) conditions for 2 weeks following which net primary productivity, pigment content, oxidative status and antioxidant enzymes, primary and secondary metabolites, and mineral content were assessed. We observed an increase in primary productivity of the acidified samples, which was associated with increased levels of photosynthetic pigments. Consequently, primary metabolites levels were increased in the thalli grown under lowered pH conditions. There was also richness in various minerals and polyunsaturated fatty acids, indicating that the low pH elevated the nutritional quality of U. compressa. We found that low pH reduced malondialdehyde (MDA) content, suggesting reduced oxidative stress. Consistently we found reduced total antioxidant capacity and a general reduction in the majority of enzymatic and non-enzymatic antioxidants in the thalli grown under acidified conditions. Our results indicate that U. compressa will benefit from seawater acidification by improving productivity. Biochemical changes will affect its nutritional qualities, which may impact the food chain/food web under future acidified ocean conditions. [Display omitted] •Seawater acidification improved primary productivity, pigments and carbon storage.•No significant change in the cellular redox status of U. compressa under acidification•Elevated level of essential amino acids and polyunsaturated fatty acids•Possible benefits to U. compressa in future predicted acidified waters
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2021.150445