Millefeuille‐Inspired Thermal Interface Materials based on Double Self‐Assembly Technique for Efficient Microelectronic Cooling and Electromagnetic Interference Shielding

Owing to the increasing power density of miniaturized and high‐frequency electronic devices, flexible thermal interface materials (TIMs) with the electromagnetic interference (EMI) shielding property are in urgent demand to maintain the system performance and reliability. Recently, carbon‐based TIMs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-01, Vol.18 (2), p.e2105567-n/a
Hauptverfasser: Gao, Yueyang, Bao, Di, Zhang, Minghang, Cui, Yexiang, Xu, Fei, Shen, Xiaosong, Zhu, Yanji, Wang, Huaiyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page e2105567
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 18
creator Gao, Yueyang
Bao, Di
Zhang, Minghang
Cui, Yexiang
Xu, Fei
Shen, Xiaosong
Zhu, Yanji
Wang, Huaiyuan
description Owing to the increasing power density of miniaturized and high‐frequency electronic devices, flexible thermal interface materials (TIMs) with the electromagnetic interference (EMI) shielding property are in urgent demand to maintain the system performance and reliability. Recently, carbon‐based TIMs receive considerable attention due to the ultrahigh intrinsic thermal conductivity (TC). However, the large‐scale production of such TIMs is restricted by some technical difficulties, such as production‐induced defects of graphite sheets, poor microstructure architecture within the matrix, and nonnegligible interfacial thermal resistance result from the strong phono scattering. In this work, inspired by the structure and production process of millefeuille cakes, a unique double self‐assembly strategy for fabricating ultrahigh thermal conductive TIMs with superior EMI shielding performance is demonstrated. The percolating and oriented multilayered microstructure enables the TIM to exhibit an ultrahigh in‐plane TC of 233.67 W m−1 K−1 together with an outstanding EMI shielding effectiveness of 79.0 dB (at 12.4 GHz). In the TIM evaluation system, a nearly 45 °C decrease is obtained by this TIM when compared to the commercial material. The obtained TIM achieves the desired balance between thermal conduction and EMI shielding performance, indicating broad prospects in the fields of military applications and next‐generation thermal management systems. Herein, a multifunctional thermal interface material is fabricated through the double self‐assembly technique to fulfil advanced thermal management applications concerning electromagnetic interference (EMI). According to the building of oriented multilayered microstructure and interfacial enhancement via nano‐coating, the composite maintains optimized coordination of the EMI shielding (shielding efficiency over 99.9999%) and thermal conductivity (in‐plane TC of 233.67 W m−1 K−1).
doi_str_mv 10.1002/smll.202105567
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2604463690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604463690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3737-4a777ec8d5d9f03ad7d2b0d9d67bd0b4d30d06e64f6212147d72d432797a861c3</originalsourceid><addsrcrecordid>eNqFkc1uEzEUhUeIipbCliWyxKabpP6LnVlWIUCkRCwS1iOPfd248tjBnlGVHY_QJ-GheBIcTQkSG1b3yv7uucc-VfWO4CnBmN7mzvspxZTg2UzIF9UVEYRNxJzWL889wZfV65wfMGaEcvmqumR8zilj8qr6uXHeg4XhVH79eFqFfHAJDNrtIXXKo1XoIVmlAW1U6ZzyGbUqFyIG9DEOrQe0BW_L7F3O0LX-iHag98F9HwDZmNDSWqcdhB5tnE4RPOg-xeA0WsToXbhHKhi0HI87dR-gL3fjXkgQyurt3oE3BX1TXdjiAN4-1-vq26flbvFlsv76ebW4W080k0xOuJJSgp6bmaktZspIQ1tsaiNka3DLDcMGCxDcCkoo4dJIajijspZqLohm19XNqHtIsbwj903nsgbvVYA45IYKzLlgosYF_fAP-hCHFIq7QpEa17I4KtR0pMoP5JzANofkOpWODcHNKcnmlGRzTrIMvH-WHdoOzBn_E10B6hF4dB6O_5Frtpv1-q_4b2A6r-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619097737</pqid></control><display><type>article</type><title>Millefeuille‐Inspired Thermal Interface Materials based on Double Self‐Assembly Technique for Efficient Microelectronic Cooling and Electromagnetic Interference Shielding</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gao, Yueyang ; Bao, Di ; Zhang, Minghang ; Cui, Yexiang ; Xu, Fei ; Shen, Xiaosong ; Zhu, Yanji ; Wang, Huaiyuan</creator><creatorcontrib>Gao, Yueyang ; Bao, Di ; Zhang, Minghang ; Cui, Yexiang ; Xu, Fei ; Shen, Xiaosong ; Zhu, Yanji ; Wang, Huaiyuan</creatorcontrib><description>Owing to the increasing power density of miniaturized and high‐frequency electronic devices, flexible thermal interface materials (TIMs) with the electromagnetic interference (EMI) shielding property are in urgent demand to maintain the system performance and reliability. Recently, carbon‐based TIMs receive considerable attention due to the ultrahigh intrinsic thermal conductivity (TC). However, the large‐scale production of such TIMs is restricted by some technical difficulties, such as production‐induced defects of graphite sheets, poor microstructure architecture within the matrix, and nonnegligible interfacial thermal resistance result from the strong phono scattering. In this work, inspired by the structure and production process of millefeuille cakes, a unique double self‐assembly strategy for fabricating ultrahigh thermal conductive TIMs with superior EMI shielding performance is demonstrated. The percolating and oriented multilayered microstructure enables the TIM to exhibit an ultrahigh in‐plane TC of 233.67 W m−1 K−1 together with an outstanding EMI shielding effectiveness of 79.0 dB (at 12.4 GHz). In the TIM evaluation system, a nearly 45 °C decrease is obtained by this TIM when compared to the commercial material. The obtained TIM achieves the desired balance between thermal conduction and EMI shielding performance, indicating broad prospects in the fields of military applications and next‐generation thermal management systems. Herein, a multifunctional thermal interface material is fabricated through the double self‐assembly technique to fulfil advanced thermal management applications concerning electromagnetic interference (EMI). According to the building of oriented multilayered microstructure and interfacial enhancement via nano‐coating, the composite maintains optimized coordination of the EMI shielding (shielding efficiency over 99.9999%) and thermal conductivity (in‐plane TC of 233.67 W m−1 K−1).</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202105567</identifier><identifier>PMID: 34842337</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Assembly ; double assembly ; electromagnetic interference (EMI) shielding ; Electromagnetic shielding ; Electronic devices ; Heat transfer ; Management systems ; Microstructure ; Military applications ; Nanotechnology ; Percolation ; Thermal conductivity ; thermal interface materials ; Thermal management ; Thermal resistance</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-01, Vol.18 (2), p.e2105567-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3737-4a777ec8d5d9f03ad7d2b0d9d67bd0b4d30d06e64f6212147d72d432797a861c3</citedby><cites>FETCH-LOGICAL-c3737-4a777ec8d5d9f03ad7d2b0d9d67bd0b4d30d06e64f6212147d72d432797a861c3</cites><orcidid>0000-0002-6283-9317</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202105567$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202105567$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34842337$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Yueyang</creatorcontrib><creatorcontrib>Bao, Di</creatorcontrib><creatorcontrib>Zhang, Minghang</creatorcontrib><creatorcontrib>Cui, Yexiang</creatorcontrib><creatorcontrib>Xu, Fei</creatorcontrib><creatorcontrib>Shen, Xiaosong</creatorcontrib><creatorcontrib>Zhu, Yanji</creatorcontrib><creatorcontrib>Wang, Huaiyuan</creatorcontrib><title>Millefeuille‐Inspired Thermal Interface Materials based on Double Self‐Assembly Technique for Efficient Microelectronic Cooling and Electromagnetic Interference Shielding</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Owing to the increasing power density of miniaturized and high‐frequency electronic devices, flexible thermal interface materials (TIMs) with the electromagnetic interference (EMI) shielding property are in urgent demand to maintain the system performance and reliability. Recently, carbon‐based TIMs receive considerable attention due to the ultrahigh intrinsic thermal conductivity (TC). However, the large‐scale production of such TIMs is restricted by some technical difficulties, such as production‐induced defects of graphite sheets, poor microstructure architecture within the matrix, and nonnegligible interfacial thermal resistance result from the strong phono scattering. In this work, inspired by the structure and production process of millefeuille cakes, a unique double self‐assembly strategy for fabricating ultrahigh thermal conductive TIMs with superior EMI shielding performance is demonstrated. The percolating and oriented multilayered microstructure enables the TIM to exhibit an ultrahigh in‐plane TC of 233.67 W m−1 K−1 together with an outstanding EMI shielding effectiveness of 79.0 dB (at 12.4 GHz). In the TIM evaluation system, a nearly 45 °C decrease is obtained by this TIM when compared to the commercial material. The obtained TIM achieves the desired balance between thermal conduction and EMI shielding performance, indicating broad prospects in the fields of military applications and next‐generation thermal management systems. Herein, a multifunctional thermal interface material is fabricated through the double self‐assembly technique to fulfil advanced thermal management applications concerning electromagnetic interference (EMI). According to the building of oriented multilayered microstructure and interfacial enhancement via nano‐coating, the composite maintains optimized coordination of the EMI shielding (shielding efficiency over 99.9999%) and thermal conductivity (in‐plane TC of 233.67 W m−1 K−1).</description><subject>Assembly</subject><subject>double assembly</subject><subject>electromagnetic interference (EMI) shielding</subject><subject>Electromagnetic shielding</subject><subject>Electronic devices</subject><subject>Heat transfer</subject><subject>Management systems</subject><subject>Microstructure</subject><subject>Military applications</subject><subject>Nanotechnology</subject><subject>Percolation</subject><subject>Thermal conductivity</subject><subject>thermal interface materials</subject><subject>Thermal management</subject><subject>Thermal resistance</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkc1uEzEUhUeIipbCliWyxKabpP6LnVlWIUCkRCwS1iOPfd248tjBnlGVHY_QJ-GheBIcTQkSG1b3yv7uucc-VfWO4CnBmN7mzvspxZTg2UzIF9UVEYRNxJzWL889wZfV65wfMGaEcvmqumR8zilj8qr6uXHeg4XhVH79eFqFfHAJDNrtIXXKo1XoIVmlAW1U6ZzyGbUqFyIG9DEOrQe0BW_L7F3O0LX-iHag98F9HwDZmNDSWqcdhB5tnE4RPOg-xeA0WsToXbhHKhi0HI87dR-gL3fjXkgQyurt3oE3BX1TXdjiAN4-1-vq26flbvFlsv76ebW4W080k0xOuJJSgp6bmaktZspIQ1tsaiNka3DLDcMGCxDcCkoo4dJIajijspZqLohm19XNqHtIsbwj903nsgbvVYA45IYKzLlgosYF_fAP-hCHFIq7QpEa17I4KtR0pMoP5JzANofkOpWODcHNKcnmlGRzTrIMvH-WHdoOzBn_E10B6hF4dB6O_5Frtpv1-q_4b2A6r-Q</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Gao, Yueyang</creator><creator>Bao, Di</creator><creator>Zhang, Minghang</creator><creator>Cui, Yexiang</creator><creator>Xu, Fei</creator><creator>Shen, Xiaosong</creator><creator>Zhu, Yanji</creator><creator>Wang, Huaiyuan</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6283-9317</orcidid></search><sort><creationdate>20220101</creationdate><title>Millefeuille‐Inspired Thermal Interface Materials based on Double Self‐Assembly Technique for Efficient Microelectronic Cooling and Electromagnetic Interference Shielding</title><author>Gao, Yueyang ; Bao, Di ; Zhang, Minghang ; Cui, Yexiang ; Xu, Fei ; Shen, Xiaosong ; Zhu, Yanji ; Wang, Huaiyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3737-4a777ec8d5d9f03ad7d2b0d9d67bd0b4d30d06e64f6212147d72d432797a861c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Assembly</topic><topic>double assembly</topic><topic>electromagnetic interference (EMI) shielding</topic><topic>Electromagnetic shielding</topic><topic>Electronic devices</topic><topic>Heat transfer</topic><topic>Management systems</topic><topic>Microstructure</topic><topic>Military applications</topic><topic>Nanotechnology</topic><topic>Percolation</topic><topic>Thermal conductivity</topic><topic>thermal interface materials</topic><topic>Thermal management</topic><topic>Thermal resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Yueyang</creatorcontrib><creatorcontrib>Bao, Di</creatorcontrib><creatorcontrib>Zhang, Minghang</creatorcontrib><creatorcontrib>Cui, Yexiang</creatorcontrib><creatorcontrib>Xu, Fei</creatorcontrib><creatorcontrib>Shen, Xiaosong</creatorcontrib><creatorcontrib>Zhu, Yanji</creatorcontrib><creatorcontrib>Wang, Huaiyuan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Yueyang</au><au>Bao, Di</au><au>Zhang, Minghang</au><au>Cui, Yexiang</au><au>Xu, Fei</au><au>Shen, Xiaosong</au><au>Zhu, Yanji</au><au>Wang, Huaiyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Millefeuille‐Inspired Thermal Interface Materials based on Double Self‐Assembly Technique for Efficient Microelectronic Cooling and Electromagnetic Interference Shielding</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>18</volume><issue>2</issue><spage>e2105567</spage><epage>n/a</epage><pages>e2105567-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Owing to the increasing power density of miniaturized and high‐frequency electronic devices, flexible thermal interface materials (TIMs) with the electromagnetic interference (EMI) shielding property are in urgent demand to maintain the system performance and reliability. Recently, carbon‐based TIMs receive considerable attention due to the ultrahigh intrinsic thermal conductivity (TC). However, the large‐scale production of such TIMs is restricted by some technical difficulties, such as production‐induced defects of graphite sheets, poor microstructure architecture within the matrix, and nonnegligible interfacial thermal resistance result from the strong phono scattering. In this work, inspired by the structure and production process of millefeuille cakes, a unique double self‐assembly strategy for fabricating ultrahigh thermal conductive TIMs with superior EMI shielding performance is demonstrated. The percolating and oriented multilayered microstructure enables the TIM to exhibit an ultrahigh in‐plane TC of 233.67 W m−1 K−1 together with an outstanding EMI shielding effectiveness of 79.0 dB (at 12.4 GHz). In the TIM evaluation system, a nearly 45 °C decrease is obtained by this TIM when compared to the commercial material. The obtained TIM achieves the desired balance between thermal conduction and EMI shielding performance, indicating broad prospects in the fields of military applications and next‐generation thermal management systems. Herein, a multifunctional thermal interface material is fabricated through the double self‐assembly technique to fulfil advanced thermal management applications concerning electromagnetic interference (EMI). According to the building of oriented multilayered microstructure and interfacial enhancement via nano‐coating, the composite maintains optimized coordination of the EMI shielding (shielding efficiency over 99.9999%) and thermal conductivity (in‐plane TC of 233.67 W m−1 K−1).</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34842337</pmid><doi>10.1002/smll.202105567</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6283-9317</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2022-01, Vol.18 (2), p.e2105567-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2604463690
source Wiley Online Library Journals Frontfile Complete
subjects Assembly
double assembly
electromagnetic interference (EMI) shielding
Electromagnetic shielding
Electronic devices
Heat transfer
Management systems
Microstructure
Military applications
Nanotechnology
Percolation
Thermal conductivity
thermal interface materials
Thermal management
Thermal resistance
title Millefeuille‐Inspired Thermal Interface Materials based on Double Self‐Assembly Technique for Efficient Microelectronic Cooling and Electromagnetic Interference Shielding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T02%3A13%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Millefeuille%E2%80%90Inspired%20Thermal%20Interface%20Materials%20based%20on%20Double%20Self%E2%80%90Assembly%20Technique%20for%20Efficient%20Microelectronic%20Cooling%20and%20Electromagnetic%20Interference%20Shielding&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Gao,%20Yueyang&rft.date=2022-01-01&rft.volume=18&rft.issue=2&rft.spage=e2105567&rft.epage=n/a&rft.pages=e2105567-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202105567&rft_dat=%3Cproquest_cross%3E2604463690%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619097737&rft_id=info:pmid/34842337&rfr_iscdi=true