Accurate Prediction of Protein Thermodynamic Stability Changes upon Residue Mutation using Free Energy Perturbation

[Display omitted] •Compared performance of MM/GBSA and FEP+ in predicting stability of protein variants.•Validated on a dataset of 328 experimentally characterized single mutants..•FEP+ has R2 = 0.65 and MUE = 0.95 kcal/mol and outperforms MM/GBSA.•Correct prediction of mutant charge state is essent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2022-01, Vol.434 (2), p.167375-167375, Article 167375
Hauptverfasser: Scarabelli, Guido, Oloo, Eliud O., Maier, Johannes K.X., Rodriguez-Granillo, Agustina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 167375
container_issue 2
container_start_page 167375
container_title Journal of molecular biology
container_volume 434
creator Scarabelli, Guido
Oloo, Eliud O.
Maier, Johannes K.X.
Rodriguez-Granillo, Agustina
description [Display omitted] •Compared performance of MM/GBSA and FEP+ in predicting stability of protein variants.•Validated on a dataset of 328 experimentally characterized single mutants..•FEP+ has R2 = 0.65 and MUE = 0.95 kcal/mol and outperforms MM/GBSA.•Correct prediction of mutant charge state is essential for reliable FEP+ predictions•Proposed computational workflow: scan with MM/GBSA, and accurately predict with FEP+. This work describes the application of a physics-based computational approach to predict the relative thermodynamic stability of protein variants, and evaluates the quantitative accuracy of those predictions compared to experimental data obtained from a diverse set of protein systems assayed at variable pH conditions. Physical stability is a key determinant of the clinical and commercial success of biological therapeutics, vaccines, diagnostics, enzymes and other protein-based products. Although experimental techniques for measuring the impact of amino acid residue mutation on the stability of proteins exist, they tend to be time consuming and costly, hence the need for accurate prediction methods. In contrast to many of the commonly available computational methods for stability prediction, the Free Energy Perturbation approach applied in this paper explicitly accounts for solvent effects and samples conformational dynamics using a rigorous molecular dynamics simulation process. On the entire validation dataset, consisting of 328 single point mutations spread across 14 distinct protein structures, our results show good overall correlation with experiment with an R2 of 0.65 and a low mean unsigned error of 0.95 kcal/mol. Application of the FEP approach in conjunction with experimental assessment techniques offers opportunities to lower the time and expense of product development and reduce the risk of costly late-stage failures.
doi_str_mv 10.1016/j.jmb.2021.167375
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2604025277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283621006124</els_id><sourcerecordid>2604025277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-bc63e45ea5945a84295abc1aeeb2de0aafd6195066a1a6c33fab9a06aba254c93</originalsourceid><addsrcrecordid>eNp9kE1PGzEQhi3UCkLgB3CpfOxlU9u7dnbVUxQlBQlUxMfZGntng6PsbuqPSvn3GEI59jKj0TzzSvMQcsXZjDOufmxn297MBBN8xtW8nMsTMuGsbopalfUXMmFMiELUpToj5yFsGWOyrOpTcparUFJUExIW1iYPEem9x9bZ6MaBjl2exohuoE8v6PuxPQzQO0sfIxi3c_FAly8wbDDQtM_8AwbXJqR3KcJ7QApu2NC1R6SrAf3mQO_Rx-TN-_qCfO1gF_Dyo0_J83r1tLwubn__ulkubgsrVB0LY1WJlUSQTSWhrkQjwVgOiEa0yAC6VvFGMqWAg7Jl2YFpgCkwIGRlm3JKvh9z9378kzBE3btgcbeDAccUtFCsYkKK-Tyj_IhaP4bgsdN773rwB82ZfnOttzq71m-u9dF1vvn2EZ9Mj-3nxT-5Gfh5BDA_-deh18E6HGz27NFG3Y7uP_GvF8SRmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604025277</pqid></control><display><type>article</type><title>Accurate Prediction of Protein Thermodynamic Stability Changes upon Residue Mutation using Free Energy Perturbation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Scarabelli, Guido ; Oloo, Eliud O. ; Maier, Johannes K.X. ; Rodriguez-Granillo, Agustina</creator><creatorcontrib>Scarabelli, Guido ; Oloo, Eliud O. ; Maier, Johannes K.X. ; Rodriguez-Granillo, Agustina</creatorcontrib><description>[Display omitted] •Compared performance of MM/GBSA and FEP+ in predicting stability of protein variants.•Validated on a dataset of 328 experimentally characterized single mutants..•FEP+ has R2 = 0.65 and MUE = 0.95 kcal/mol and outperforms MM/GBSA.•Correct prediction of mutant charge state is essential for reliable FEP+ predictions•Proposed computational workflow: scan with MM/GBSA, and accurately predict with FEP+. This work describes the application of a physics-based computational approach to predict the relative thermodynamic stability of protein variants, and evaluates the quantitative accuracy of those predictions compared to experimental data obtained from a diverse set of protein systems assayed at variable pH conditions. Physical stability is a key determinant of the clinical and commercial success of biological therapeutics, vaccines, diagnostics, enzymes and other protein-based products. Although experimental techniques for measuring the impact of amino acid residue mutation on the stability of proteins exist, they tend to be time consuming and costly, hence the need for accurate prediction methods. In contrast to many of the commonly available computational methods for stability prediction, the Free Energy Perturbation approach applied in this paper explicitly accounts for solvent effects and samples conformational dynamics using a rigorous molecular dynamics simulation process. On the entire validation dataset, consisting of 328 single point mutations spread across 14 distinct protein structures, our results show good overall correlation with experiment with an R2 of 0.65 and a low mean unsigned error of 0.95 kcal/mol. Application of the FEP approach in conjunction with experimental assessment techniques offers opportunities to lower the time and expense of product development and reduce the risk of costly late-stage failures.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2021.167375</identifier><identifier>PMID: 34826524</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Computational Biology ; computational predictions ; Entropy ; free energy perturbation ; MM/GBSA ; Molecular Dynamics Simulation ; mutant ; Mutant Proteins - chemistry ; Mutant Proteins - genetics ; Mutation ; Point Mutation ; Protein Conformation ; Protein Stability ; Proteins - chemistry ; Proteins - genetics ; Solvents - chemistry ; Thermodynamics ; thermostability</subject><ispartof>Journal of molecular biology, 2022-01, Vol.434 (2), p.167375-167375, Article 167375</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-bc63e45ea5945a84295abc1aeeb2de0aafd6195066a1a6c33fab9a06aba254c93</citedby><cites>FETCH-LOGICAL-c268t-bc63e45ea5945a84295abc1aeeb2de0aafd6195066a1a6c33fab9a06aba254c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmb.2021.167375$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34826524$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scarabelli, Guido</creatorcontrib><creatorcontrib>Oloo, Eliud O.</creatorcontrib><creatorcontrib>Maier, Johannes K.X.</creatorcontrib><creatorcontrib>Rodriguez-Granillo, Agustina</creatorcontrib><title>Accurate Prediction of Protein Thermodynamic Stability Changes upon Residue Mutation using Free Energy Perturbation</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>[Display omitted] •Compared performance of MM/GBSA and FEP+ in predicting stability of protein variants.•Validated on a dataset of 328 experimentally characterized single mutants..•FEP+ has R2 = 0.65 and MUE = 0.95 kcal/mol and outperforms MM/GBSA.•Correct prediction of mutant charge state is essential for reliable FEP+ predictions•Proposed computational workflow: scan with MM/GBSA, and accurately predict with FEP+. This work describes the application of a physics-based computational approach to predict the relative thermodynamic stability of protein variants, and evaluates the quantitative accuracy of those predictions compared to experimental data obtained from a diverse set of protein systems assayed at variable pH conditions. Physical stability is a key determinant of the clinical and commercial success of biological therapeutics, vaccines, diagnostics, enzymes and other protein-based products. Although experimental techniques for measuring the impact of amino acid residue mutation on the stability of proteins exist, they tend to be time consuming and costly, hence the need for accurate prediction methods. In contrast to many of the commonly available computational methods for stability prediction, the Free Energy Perturbation approach applied in this paper explicitly accounts for solvent effects and samples conformational dynamics using a rigorous molecular dynamics simulation process. On the entire validation dataset, consisting of 328 single point mutations spread across 14 distinct protein structures, our results show good overall correlation with experiment with an R2 of 0.65 and a low mean unsigned error of 0.95 kcal/mol. Application of the FEP approach in conjunction with experimental assessment techniques offers opportunities to lower the time and expense of product development and reduce the risk of costly late-stage failures.</description><subject>Computational Biology</subject><subject>computational predictions</subject><subject>Entropy</subject><subject>free energy perturbation</subject><subject>MM/GBSA</subject><subject>Molecular Dynamics Simulation</subject><subject>mutant</subject><subject>Mutant Proteins - chemistry</subject><subject>Mutant Proteins - genetics</subject><subject>Mutation</subject><subject>Point Mutation</subject><subject>Protein Conformation</subject><subject>Protein Stability</subject><subject>Proteins - chemistry</subject><subject>Proteins - genetics</subject><subject>Solvents - chemistry</subject><subject>Thermodynamics</subject><subject>thermostability</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1PGzEQhi3UCkLgB3CpfOxlU9u7dnbVUxQlBQlUxMfZGntng6PsbuqPSvn3GEI59jKj0TzzSvMQcsXZjDOufmxn297MBBN8xtW8nMsTMuGsbopalfUXMmFMiELUpToj5yFsGWOyrOpTcparUFJUExIW1iYPEem9x9bZ6MaBjl2exohuoE8v6PuxPQzQO0sfIxi3c_FAly8wbDDQtM_8AwbXJqR3KcJ7QApu2NC1R6SrAf3mQO_Rx-TN-_qCfO1gF_Dyo0_J83r1tLwubn__ulkubgsrVB0LY1WJlUSQTSWhrkQjwVgOiEa0yAC6VvFGMqWAg7Jl2YFpgCkwIGRlm3JKvh9z9378kzBE3btgcbeDAccUtFCsYkKK-Tyj_IhaP4bgsdN773rwB82ZfnOttzq71m-u9dF1vvn2EZ9Mj-3nxT-5Gfh5BDA_-deh18E6HGz27NFG3Y7uP_GvF8SRmg</recordid><startdate>20220130</startdate><enddate>20220130</enddate><creator>Scarabelli, Guido</creator><creator>Oloo, Eliud O.</creator><creator>Maier, Johannes K.X.</creator><creator>Rodriguez-Granillo, Agustina</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20220130</creationdate><title>Accurate Prediction of Protein Thermodynamic Stability Changes upon Residue Mutation using Free Energy Perturbation</title><author>Scarabelli, Guido ; Oloo, Eliud O. ; Maier, Johannes K.X. ; Rodriguez-Granillo, Agustina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-bc63e45ea5945a84295abc1aeeb2de0aafd6195066a1a6c33fab9a06aba254c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computational Biology</topic><topic>computational predictions</topic><topic>Entropy</topic><topic>free energy perturbation</topic><topic>MM/GBSA</topic><topic>Molecular Dynamics Simulation</topic><topic>mutant</topic><topic>Mutant Proteins - chemistry</topic><topic>Mutant Proteins - genetics</topic><topic>Mutation</topic><topic>Point Mutation</topic><topic>Protein Conformation</topic><topic>Protein Stability</topic><topic>Proteins - chemistry</topic><topic>Proteins - genetics</topic><topic>Solvents - chemistry</topic><topic>Thermodynamics</topic><topic>thermostability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scarabelli, Guido</creatorcontrib><creatorcontrib>Oloo, Eliud O.</creatorcontrib><creatorcontrib>Maier, Johannes K.X.</creatorcontrib><creatorcontrib>Rodriguez-Granillo, Agustina</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scarabelli, Guido</au><au>Oloo, Eliud O.</au><au>Maier, Johannes K.X.</au><au>Rodriguez-Granillo, Agustina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate Prediction of Protein Thermodynamic Stability Changes upon Residue Mutation using Free Energy Perturbation</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2022-01-30</date><risdate>2022</risdate><volume>434</volume><issue>2</issue><spage>167375</spage><epage>167375</epage><pages>167375-167375</pages><artnum>167375</artnum><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>[Display omitted] •Compared performance of MM/GBSA and FEP+ in predicting stability of protein variants.•Validated on a dataset of 328 experimentally characterized single mutants..•FEP+ has R2 = 0.65 and MUE = 0.95 kcal/mol and outperforms MM/GBSA.•Correct prediction of mutant charge state is essential for reliable FEP+ predictions•Proposed computational workflow: scan with MM/GBSA, and accurately predict with FEP+. This work describes the application of a physics-based computational approach to predict the relative thermodynamic stability of protein variants, and evaluates the quantitative accuracy of those predictions compared to experimental data obtained from a diverse set of protein systems assayed at variable pH conditions. Physical stability is a key determinant of the clinical and commercial success of biological therapeutics, vaccines, diagnostics, enzymes and other protein-based products. Although experimental techniques for measuring the impact of amino acid residue mutation on the stability of proteins exist, they tend to be time consuming and costly, hence the need for accurate prediction methods. In contrast to many of the commonly available computational methods for stability prediction, the Free Energy Perturbation approach applied in this paper explicitly accounts for solvent effects and samples conformational dynamics using a rigorous molecular dynamics simulation process. On the entire validation dataset, consisting of 328 single point mutations spread across 14 distinct protein structures, our results show good overall correlation with experiment with an R2 of 0.65 and a low mean unsigned error of 0.95 kcal/mol. Application of the FEP approach in conjunction with experimental assessment techniques offers opportunities to lower the time and expense of product development and reduce the risk of costly late-stage failures.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>34826524</pmid><doi>10.1016/j.jmb.2021.167375</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2022-01, Vol.434 (2), p.167375-167375, Article 167375
issn 0022-2836
1089-8638
language eng
recordid cdi_proquest_miscellaneous_2604025277
source MEDLINE; Elsevier ScienceDirect Journals
subjects Computational Biology
computational predictions
Entropy
free energy perturbation
MM/GBSA
Molecular Dynamics Simulation
mutant
Mutant Proteins - chemistry
Mutant Proteins - genetics
Mutation
Point Mutation
Protein Conformation
Protein Stability
Proteins - chemistry
Proteins - genetics
Solvents - chemistry
Thermodynamics
thermostability
title Accurate Prediction of Protein Thermodynamic Stability Changes upon Residue Mutation using Free Energy Perturbation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T17%3A11%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20Prediction%20of%20Protein%20Thermodynamic%20Stability%20Changes%20upon%20Residue%20Mutation%20using%20Free%20Energy%20Perturbation&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Scarabelli,%20Guido&rft.date=2022-01-30&rft.volume=434&rft.issue=2&rft.spage=167375&rft.epage=167375&rft.pages=167375-167375&rft.artnum=167375&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2021.167375&rft_dat=%3Cproquest_cross%3E2604025277%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604025277&rft_id=info:pmid/34826524&rft_els_id=S0022283621006124&rfr_iscdi=true