Preliminary Study on the Simulation of a Radiation Damage Analysis of Biodegradable Polymers

In this study, biodegradable poly(L-lactide-co-ε-caprolactone) (PLCL) and poly(L-co-d,l lactide) (PLDLA) were evaluated using Geant4 (G4EmStandardPhysics_option4) for damage simulation, in order to predict the safety of these biodegradable polymers against gamma ray sterilization. In the PLCL damage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2021-11, Vol.14 (22), p.6777
Hauptverfasser: Shim, Ha-Eun, Yeon, Yeong-Heum, Lim, Dae-Hee, Nam, You-Ree, Park, Jin-Hyung, Lee, Nam-Ho, Gwon, Hui-Jeong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, biodegradable poly(L-lactide-co-ε-caprolactone) (PLCL) and poly(L-co-d,l lactide) (PLDLA) were evaluated using Geant4 (G4EmStandardPhysics_option4) for damage simulation, in order to predict the safety of these biodegradable polymers against gamma ray sterilization. In the PLCL damage model, both chain scission and crosslinking reactions appear to occur at a radiation dose in the range 0–200 kGy, but the chain cleavage reaction is expected to be relatively dominant at high irradiation doses above 500 kGy. On the other hand, the PLDLA damage model predicted that the chain cleavage reaction would prevail at the total irradiation dose (25–500 kGy). To verify the simulation results, the physicochemical changes in the irradiated PLCL and PLDLA films were characterized by GPC (gel permeation chromatography), ATR-FTIR (attenuated total reflection Fourier transform infrared), and DSC (difference scanning calorimetry) analyses. The Geant4 simulation curve for the radiation-induced damage to the molecular weight was consistent with the experimentally obtained results. These results imply that the pre-simulation study can be useful for predicting the optimal irradiation dose and ensuring material safety, particularly for implanted biodegradable materials in radiation processing.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma14226777