Nitrogen‐Enriched Conjugated Polymer Enabled Metal‐Free Carbon Nanozymes with Efficient Oxidase‐Like Activity

Metal‐free carbon nanozymes could be promising with the unique features of intrinsic catalytic ability, structure diversity, and strong tolerance to acidic/alkaline media. However, to date, the study of metal‐free carbon nanozymes fell far behind metal‐based nanomaterials, in which, the majority rep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-01, Vol.18 (3), p.e2104993-n/a
Hauptverfasser: Zhu, Dangqiang, Zhang, Mengli, Pu, Li, Gai, Panpan, Li, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page e2104993
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 18
creator Zhu, Dangqiang
Zhang, Mengli
Pu, Li
Gai, Panpan
Li, Feng
description Metal‐free carbon nanozymes could be promising with the unique features of intrinsic catalytic ability, structure diversity, and strong tolerance to acidic/alkaline media. However, to date, the study of metal‐free carbon nanozymes fell far behind metal‐based nanomaterials, in which, the majority reported much more peroxidase‐like activity than other enzyme‐mimicking behavior (e.g., oxidase). Thus, the exploit of high‐performance carbon nanozymes is of importance but challenging. In this work, the nitrogen‐rich conjugated polymer (Aza‐CPs) with rigid network structure is utilized as precursor to yield N‐doped carbon material QAU‐Z1 in high yield via a direct pyrolysis method. Surprisingly, QAU‐Z1 stood out in oxidase‐like behavior, which significantly outperformed the control materials GNC‐900 and QAU‐Z2 with nucleobase or conjugated small molecule as precursor, respectively. More importantly, it is a crucial revelation that the catalytic performance is closely related to the change of zeta potential for carbon nanozyme during the substrate 3,3′,5,5′‐tetramethylbenzidine oxidation process, as well as its catalytical capacity to O2, which could be insightful to understand the inherent mechanism. This work not only presents the potential of conjugated polymers in constructing highly efficient carbon nanozyme, but also reveals the vital role of interaction mode between the nanozyme and substrate in the catalytic performance. Nitrogen‐rich conjugated polymer is first utilized as precursor to construct metal‐free N‐doped carbon nanozymes QAU‐Z1, which is almost the best performance among the current metal‐free oxidase‐like nanozymes. The inherent mechanism can be attributed to the zeta potential variation between negative nanozyme and positively‐charged TMB molecules, as well as the capacity of QAU‐Z1 to decrease the overpotential of O2 reduction.
doi_str_mv 10.1002/smll.202104993
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2604019610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621139444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-b176e8f9604c78ac1e5949bc23cc28722b6bb6073668dadf53e73432db236cbc3</originalsourceid><addsrcrecordid>eNqF0ctO3DAUBmALgYBCt11WkbphM4Nv48RLNBouUoBKpevIdk7AU8emdgIMqz4Cz9gnqdHQqdQNKx9Ln39Z50foE8FTgjE9Tr1zU4opwVxKtoX2iSBsIioqtzczwXvoQ0pLjBmhvNxFe4xXrOQzsY_SlR1iuAX_-9fLwkdr7qAt5sEvx1s15PFrcKseYrHwSrt8v4RBuWxPI0AxV1EHX1wpH56zSsWjHe6KRddZY8EPxfWTbVWCzGv7A4oTM9gHO6wO0U6nXIKPb-cB-n66uJmfT-rrs4v5ST0xrGRsokkpoOqkwNyUlTIEZpJLbSgzhlYlpVpoLXDJhKha1XYzBiXjjLaaMmG0YQfoaJ17H8PPEdLQ9DYZcE55CGNqaE7GRAqCM_3yH12GMfr8u6woIUxyzrOarpWJIaUIXXMfba_iqiG4ea2jea2j2dSRH3x-ix11D-2G_91_BnINHq2D1TtxzbfLuv4X_gdnHJo_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621139444</pqid></control><display><type>article</type><title>Nitrogen‐Enriched Conjugated Polymer Enabled Metal‐Free Carbon Nanozymes with Efficient Oxidase‐Like Activity</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhu, Dangqiang ; Zhang, Mengli ; Pu, Li ; Gai, Panpan ; Li, Feng</creator><creatorcontrib>Zhu, Dangqiang ; Zhang, Mengli ; Pu, Li ; Gai, Panpan ; Li, Feng</creatorcontrib><description>Metal‐free carbon nanozymes could be promising with the unique features of intrinsic catalytic ability, structure diversity, and strong tolerance to acidic/alkaline media. However, to date, the study of metal‐free carbon nanozymes fell far behind metal‐based nanomaterials, in which, the majority reported much more peroxidase‐like activity than other enzyme‐mimicking behavior (e.g., oxidase). Thus, the exploit of high‐performance carbon nanozymes is of importance but challenging. In this work, the nitrogen‐rich conjugated polymer (Aza‐CPs) with rigid network structure is utilized as precursor to yield N‐doped carbon material QAU‐Z1 in high yield via a direct pyrolysis method. Surprisingly, QAU‐Z1 stood out in oxidase‐like behavior, which significantly outperformed the control materials GNC‐900 and QAU‐Z2 with nucleobase or conjugated small molecule as precursor, respectively. More importantly, it is a crucial revelation that the catalytic performance is closely related to the change of zeta potential for carbon nanozyme during the substrate 3,3′,5,5′‐tetramethylbenzidine oxidation process, as well as its catalytical capacity to O2, which could be insightful to understand the inherent mechanism. This work not only presents the potential of conjugated polymers in constructing highly efficient carbon nanozyme, but also reveals the vital role of interaction mode between the nanozyme and substrate in the catalytic performance. Nitrogen‐rich conjugated polymer is first utilized as precursor to construct metal‐free N‐doped carbon nanozymes QAU‐Z1, which is almost the best performance among the current metal‐free oxidase‐like nanozymes. The inherent mechanism can be attributed to the zeta potential variation between negative nanozyme and positively‐charged TMB molecules, as well as the capacity of QAU‐Z1 to decrease the overpotential of O2 reduction.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202104993</identifier><identifier>PMID: 34837456</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Carbon ; Carbon - chemistry ; carbon nanozymes ; Catalysis ; colorimetric assays ; conjugated polymers ; Nanomaterials ; Nanostructures ; Nanotechnology ; Nitrogen ; Nitrogen - chemistry ; Oxidase ; oxidase‐like behavior ; Oxidation ; Oxidoreductases ; Peroxidase ; Polymers ; Precursors ; Pyrolysis ; Substrates ; Zeta potential</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-01, Vol.18 (3), p.e2104993-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-b176e8f9604c78ac1e5949bc23cc28722b6bb6073668dadf53e73432db236cbc3</citedby><cites>FETCH-LOGICAL-c3733-b176e8f9604c78ac1e5949bc23cc28722b6bb6073668dadf53e73432db236cbc3</cites><orcidid>0000-0002-3894-6139</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202104993$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202104993$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27913,27914,45563,45564</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34837456$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Dangqiang</creatorcontrib><creatorcontrib>Zhang, Mengli</creatorcontrib><creatorcontrib>Pu, Li</creatorcontrib><creatorcontrib>Gai, Panpan</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><title>Nitrogen‐Enriched Conjugated Polymer Enabled Metal‐Free Carbon Nanozymes with Efficient Oxidase‐Like Activity</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Metal‐free carbon nanozymes could be promising with the unique features of intrinsic catalytic ability, structure diversity, and strong tolerance to acidic/alkaline media. However, to date, the study of metal‐free carbon nanozymes fell far behind metal‐based nanomaterials, in which, the majority reported much more peroxidase‐like activity than other enzyme‐mimicking behavior (e.g., oxidase). Thus, the exploit of high‐performance carbon nanozymes is of importance but challenging. In this work, the nitrogen‐rich conjugated polymer (Aza‐CPs) with rigid network structure is utilized as precursor to yield N‐doped carbon material QAU‐Z1 in high yield via a direct pyrolysis method. Surprisingly, QAU‐Z1 stood out in oxidase‐like behavior, which significantly outperformed the control materials GNC‐900 and QAU‐Z2 with nucleobase or conjugated small molecule as precursor, respectively. More importantly, it is a crucial revelation that the catalytic performance is closely related to the change of zeta potential for carbon nanozyme during the substrate 3,3′,5,5′‐tetramethylbenzidine oxidation process, as well as its catalytical capacity to O2, which could be insightful to understand the inherent mechanism. This work not only presents the potential of conjugated polymers in constructing highly efficient carbon nanozyme, but also reveals the vital role of interaction mode between the nanozyme and substrate in the catalytic performance. Nitrogen‐rich conjugated polymer is first utilized as precursor to construct metal‐free N‐doped carbon nanozymes QAU‐Z1, which is almost the best performance among the current metal‐free oxidase‐like nanozymes. The inherent mechanism can be attributed to the zeta potential variation between negative nanozyme and positively‐charged TMB molecules, as well as the capacity of QAU‐Z1 to decrease the overpotential of O2 reduction.</description><subject>Carbon</subject><subject>Carbon - chemistry</subject><subject>carbon nanozymes</subject><subject>Catalysis</subject><subject>colorimetric assays</subject><subject>conjugated polymers</subject><subject>Nanomaterials</subject><subject>Nanostructures</subject><subject>Nanotechnology</subject><subject>Nitrogen</subject><subject>Nitrogen - chemistry</subject><subject>Oxidase</subject><subject>oxidase‐like behavior</subject><subject>Oxidation</subject><subject>Oxidoreductases</subject><subject>Peroxidase</subject><subject>Polymers</subject><subject>Precursors</subject><subject>Pyrolysis</subject><subject>Substrates</subject><subject>Zeta potential</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0ctO3DAUBmALgYBCt11WkbphM4Nv48RLNBouUoBKpevIdk7AU8emdgIMqz4Cz9gnqdHQqdQNKx9Ln39Z50foE8FTgjE9Tr1zU4opwVxKtoX2iSBsIioqtzczwXvoQ0pLjBmhvNxFe4xXrOQzsY_SlR1iuAX_-9fLwkdr7qAt5sEvx1s15PFrcKseYrHwSrt8v4RBuWxPI0AxV1EHX1wpH56zSsWjHe6KRddZY8EPxfWTbVWCzGv7A4oTM9gHO6wO0U6nXIKPb-cB-n66uJmfT-rrs4v5ST0xrGRsokkpoOqkwNyUlTIEZpJLbSgzhlYlpVpoLXDJhKha1XYzBiXjjLaaMmG0YQfoaJ17H8PPEdLQ9DYZcE55CGNqaE7GRAqCM_3yH12GMfr8u6woIUxyzrOarpWJIaUIXXMfba_iqiG4ea2jea2j2dSRH3x-ix11D-2G_91_BnINHq2D1TtxzbfLuv4X_gdnHJo_</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Zhu, Dangqiang</creator><creator>Zhang, Mengli</creator><creator>Pu, Li</creator><creator>Gai, Panpan</creator><creator>Li, Feng</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3894-6139</orcidid></search><sort><creationdate>20220101</creationdate><title>Nitrogen‐Enriched Conjugated Polymer Enabled Metal‐Free Carbon Nanozymes with Efficient Oxidase‐Like Activity</title><author>Zhu, Dangqiang ; Zhang, Mengli ; Pu, Li ; Gai, Panpan ; Li, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-b176e8f9604c78ac1e5949bc23cc28722b6bb6073668dadf53e73432db236cbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon</topic><topic>Carbon - chemistry</topic><topic>carbon nanozymes</topic><topic>Catalysis</topic><topic>colorimetric assays</topic><topic>conjugated polymers</topic><topic>Nanomaterials</topic><topic>Nanostructures</topic><topic>Nanotechnology</topic><topic>Nitrogen</topic><topic>Nitrogen - chemistry</topic><topic>Oxidase</topic><topic>oxidase‐like behavior</topic><topic>Oxidation</topic><topic>Oxidoreductases</topic><topic>Peroxidase</topic><topic>Polymers</topic><topic>Precursors</topic><topic>Pyrolysis</topic><topic>Substrates</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Dangqiang</creatorcontrib><creatorcontrib>Zhang, Mengli</creatorcontrib><creatorcontrib>Pu, Li</creatorcontrib><creatorcontrib>Gai, Panpan</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Dangqiang</au><au>Zhang, Mengli</au><au>Pu, Li</au><au>Gai, Panpan</au><au>Li, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen‐Enriched Conjugated Polymer Enabled Metal‐Free Carbon Nanozymes with Efficient Oxidase‐Like Activity</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>18</volume><issue>3</issue><spage>e2104993</spage><epage>n/a</epage><pages>e2104993-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Metal‐free carbon nanozymes could be promising with the unique features of intrinsic catalytic ability, structure diversity, and strong tolerance to acidic/alkaline media. However, to date, the study of metal‐free carbon nanozymes fell far behind metal‐based nanomaterials, in which, the majority reported much more peroxidase‐like activity than other enzyme‐mimicking behavior (e.g., oxidase). Thus, the exploit of high‐performance carbon nanozymes is of importance but challenging. In this work, the nitrogen‐rich conjugated polymer (Aza‐CPs) with rigid network structure is utilized as precursor to yield N‐doped carbon material QAU‐Z1 in high yield via a direct pyrolysis method. Surprisingly, QAU‐Z1 stood out in oxidase‐like behavior, which significantly outperformed the control materials GNC‐900 and QAU‐Z2 with nucleobase or conjugated small molecule as precursor, respectively. More importantly, it is a crucial revelation that the catalytic performance is closely related to the change of zeta potential for carbon nanozyme during the substrate 3,3′,5,5′‐tetramethylbenzidine oxidation process, as well as its catalytical capacity to O2, which could be insightful to understand the inherent mechanism. This work not only presents the potential of conjugated polymers in constructing highly efficient carbon nanozyme, but also reveals the vital role of interaction mode between the nanozyme and substrate in the catalytic performance. Nitrogen‐rich conjugated polymer is first utilized as precursor to construct metal‐free N‐doped carbon nanozymes QAU‐Z1, which is almost the best performance among the current metal‐free oxidase‐like nanozymes. The inherent mechanism can be attributed to the zeta potential variation between negative nanozyme and positively‐charged TMB molecules, as well as the capacity of QAU‐Z1 to decrease the overpotential of O2 reduction.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34837456</pmid><doi>10.1002/smll.202104993</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3894-6139</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2022-01, Vol.18 (3), p.e2104993-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2604019610
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Carbon
Carbon - chemistry
carbon nanozymes
Catalysis
colorimetric assays
conjugated polymers
Nanomaterials
Nanostructures
Nanotechnology
Nitrogen
Nitrogen - chemistry
Oxidase
oxidase‐like behavior
Oxidation
Oxidoreductases
Peroxidase
Polymers
Precursors
Pyrolysis
Substrates
Zeta potential
title Nitrogen‐Enriched Conjugated Polymer Enabled Metal‐Free Carbon Nanozymes with Efficient Oxidase‐Like Activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A19%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen%E2%80%90Enriched%20Conjugated%20Polymer%20Enabled%20Metal%E2%80%90Free%20Carbon%20Nanozymes%20with%20Efficient%20Oxidase%E2%80%90Like%20Activity&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zhu,%20Dangqiang&rft.date=2022-01-01&rft.volume=18&rft.issue=3&rft.spage=e2104993&rft.epage=n/a&rft.pages=e2104993-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202104993&rft_dat=%3Cproquest_cross%3E2621139444%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621139444&rft_id=info:pmid/34837456&rfr_iscdi=true