Lithiophilic Carbon Nanofiber/Graphene Nanosheet Composite Scaffold Prepared by a Scalable and Controllable Biofabrication Method for Ultrastable Dendrite‐Free Lithium‐Metal Anodes
Li metal is regarded as a promising anode for high‐energy‐density Li batteries, while the limited cycle life and fast capacity decay caused by notorious Li dendrite growth seriously impedes its application. Herein, a robust and highly lithiophilic bacterial cellulose‐derived carbon nanofiber@reduced...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-01, Vol.18 (3), p.e2104735-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | e2104735 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 18 |
creator | Hu, Zongmin Su, Hai Zhou, Mengfan Liu, Jinzhi Wan, Yizao Hu, Jimin Xu, Yunhua |
description | Li metal is regarded as a promising anode for high‐energy‐density Li batteries, while the limited cycle life and fast capacity decay caused by notorious Li dendrite growth seriously impedes its application. Herein, a robust and highly lithiophilic bacterial cellulose‐derived carbon nanofiber@reduced graphene oxide nanosheet (BC‐CNF@rGO) composite scaffold is fabricated as a host for dendrite‐free Li metal anode through an in situ biofabrication method. The abundant lithiophilic functional groups, conductive 3D network, and excellent mechanical property can effectively regulate uniform Li nucleation and deposition, enable fast reaction kinetics, and alleviate volume change. As a result, the BC‐CNF@rGO skeleton achieves exceptional Li plating/stripping performance with a high average Coulombic efficiency of 98.3% over 800 cycles, and a long cycle life span of 5000 h at 2 mA cm−2@1 mAh cm−2 with a low overpotential of ≈15 mV for lithium plating. Furthermore, full cells coupling BC‐CNF@rGO‐Li anode with LiFePO4 cathode achieves an unprecedented cycling stability with a long cycle life of 3000 cycles at 1 C. This work sheds light on a promising material design and fabrication strategy for realizing high performance Li metal batteries.
Lithiophilic carbon nanofiber@reduced graphene oxide nanosheet composite scaffolds are fabricated through an in situ biofabrication method. The abundant lithiophilic functional groups and conductive 3D network can effectively regulate uniform Li nucleation and deposition, realizing exceptional Li plating/stripping, and full cell cycling performance. The findings provide a promising material fabrication strategy for realizing high performance Li metal batteries. |
doi_str_mv | 10.1002/smll.202104735 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2604018213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604018213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3735-bf0e3265e3a5a456a449400d54fb7bb1d2a1601d038b638f18c2a7df708c2b183</originalsourceid><addsrcrecordid>eNqFkU1uFDEQhVuIiITAliWyxIbNTPzTf7MMAwmROoAUsm6V22W1I7fd2N2KZscROA7n4SR4ZpKJxIaVy09fvarSy7I3jC4ZpfwsDtYuOeWM5pUonmUnrGRiUdZ89fxQM3qcvYzxjlLBeF69yI5FXotK0Pok-92YqTd-7I01HVlDkN6RL-C8NhLD2WWAsUeHOyn2iBNZ-2H00UxIbjrQ2ltFvgUcIaAickNgK1uQFgk4lWg3BW_3wgfjNchgOphMGnONU-8V0T6QWzsFiNOO-ohOheT_5-evi4BIdhvOQ_qmBrDk3HmF8VV2pMFGfP3wnma3F5--rz8vmq-XV-vzZtGlC4uF1BQFLwsUUEBelJDnq5xSVeRaVlIyxYGVlCkqalmKWrO641ApXdFUSFaL0-z93ncM_seMcWoHEztMFzn0c2x5SXPKas5EQt_9g975Obi0XaI4Y2LFqq3hck91wccYULdjMAOETctou8203WbaHjJNDW8fbGc5oDrgjyEmYLUH7o3FzX_s2pvrpnky_wsBPbKI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621139178</pqid></control><display><type>article</type><title>Lithiophilic Carbon Nanofiber/Graphene Nanosheet Composite Scaffold Prepared by a Scalable and Controllable Biofabrication Method for Ultrastable Dendrite‐Free Lithium‐Metal Anodes</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Hu, Zongmin ; Su, Hai ; Zhou, Mengfan ; Liu, Jinzhi ; Wan, Yizao ; Hu, Jimin ; Xu, Yunhua</creator><creatorcontrib>Hu, Zongmin ; Su, Hai ; Zhou, Mengfan ; Liu, Jinzhi ; Wan, Yizao ; Hu, Jimin ; Xu, Yunhua</creatorcontrib><description>Li metal is regarded as a promising anode for high‐energy‐density Li batteries, while the limited cycle life and fast capacity decay caused by notorious Li dendrite growth seriously impedes its application. Herein, a robust and highly lithiophilic bacterial cellulose‐derived carbon nanofiber@reduced graphene oxide nanosheet (BC‐CNF@rGO) composite scaffold is fabricated as a host for dendrite‐free Li metal anode through an in situ biofabrication method. The abundant lithiophilic functional groups, conductive 3D network, and excellent mechanical property can effectively regulate uniform Li nucleation and deposition, enable fast reaction kinetics, and alleviate volume change. As a result, the BC‐CNF@rGO skeleton achieves exceptional Li plating/stripping performance with a high average Coulombic efficiency of 98.3% over 800 cycles, and a long cycle life span of 5000 h at 2 mA cm−2@1 mAh cm−2 with a low overpotential of ≈15 mV for lithium plating. Furthermore, full cells coupling BC‐CNF@rGO‐Li anode with LiFePO4 cathode achieves an unprecedented cycling stability with a long cycle life of 3000 cycles at 1 C. This work sheds light on a promising material design and fabrication strategy for realizing high performance Li metal batteries.
Lithiophilic carbon nanofiber@reduced graphene oxide nanosheet composite scaffolds are fabricated through an in situ biofabrication method. The abundant lithiophilic functional groups and conductive 3D network can effectively regulate uniform Li nucleation and deposition, realizing exceptional Li plating/stripping, and full cell cycling performance. The findings provide a promising material fabrication strategy for realizing high performance Li metal batteries.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202104735</identifier><identifier>PMID: 34837308</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anodes ; bacterial cellulose ; biofabrication methods ; Carbon ; Carbon fibers ; carbon nanofibers ; Decay rate ; Dendritic structure ; Electrodes ; Functional groups ; Graphene ; graphene nanosheets ; Graphite ; Lithium ; lithium metal anodes ; Nanofibers ; Nanosheets ; Nanotechnology ; Nucleation ; Plating ; Reaction kinetics ; Scaffolds</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-01, Vol.18 (3), p.e2104735-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3735-bf0e3265e3a5a456a449400d54fb7bb1d2a1601d038b638f18c2a7df708c2b183</citedby><cites>FETCH-LOGICAL-c3735-bf0e3265e3a5a456a449400d54fb7bb1d2a1601d038b638f18c2a7df708c2b183</cites><orcidid>0000-0003-1818-3661</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202104735$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202104735$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34837308$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Zongmin</creatorcontrib><creatorcontrib>Su, Hai</creatorcontrib><creatorcontrib>Zhou, Mengfan</creatorcontrib><creatorcontrib>Liu, Jinzhi</creatorcontrib><creatorcontrib>Wan, Yizao</creatorcontrib><creatorcontrib>Hu, Jimin</creatorcontrib><creatorcontrib>Xu, Yunhua</creatorcontrib><title>Lithiophilic Carbon Nanofiber/Graphene Nanosheet Composite Scaffold Prepared by a Scalable and Controllable Biofabrication Method for Ultrastable Dendrite‐Free Lithium‐Metal Anodes</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Li metal is regarded as a promising anode for high‐energy‐density Li batteries, while the limited cycle life and fast capacity decay caused by notorious Li dendrite growth seriously impedes its application. Herein, a robust and highly lithiophilic bacterial cellulose‐derived carbon nanofiber@reduced graphene oxide nanosheet (BC‐CNF@rGO) composite scaffold is fabricated as a host for dendrite‐free Li metal anode through an in situ biofabrication method. The abundant lithiophilic functional groups, conductive 3D network, and excellent mechanical property can effectively regulate uniform Li nucleation and deposition, enable fast reaction kinetics, and alleviate volume change. As a result, the BC‐CNF@rGO skeleton achieves exceptional Li plating/stripping performance with a high average Coulombic efficiency of 98.3% over 800 cycles, and a long cycle life span of 5000 h at 2 mA cm−2@1 mAh cm−2 with a low overpotential of ≈15 mV for lithium plating. Furthermore, full cells coupling BC‐CNF@rGO‐Li anode with LiFePO4 cathode achieves an unprecedented cycling stability with a long cycle life of 3000 cycles at 1 C. This work sheds light on a promising material design and fabrication strategy for realizing high performance Li metal batteries.
Lithiophilic carbon nanofiber@reduced graphene oxide nanosheet composite scaffolds are fabricated through an in situ biofabrication method. The abundant lithiophilic functional groups and conductive 3D network can effectively regulate uniform Li nucleation and deposition, realizing exceptional Li plating/stripping, and full cell cycling performance. The findings provide a promising material fabrication strategy for realizing high performance Li metal batteries.</description><subject>Anodes</subject><subject>bacterial cellulose</subject><subject>biofabrication methods</subject><subject>Carbon</subject><subject>Carbon fibers</subject><subject>carbon nanofibers</subject><subject>Decay rate</subject><subject>Dendritic structure</subject><subject>Electrodes</subject><subject>Functional groups</subject><subject>Graphene</subject><subject>graphene nanosheets</subject><subject>Graphite</subject><subject>Lithium</subject><subject>lithium metal anodes</subject><subject>Nanofibers</subject><subject>Nanosheets</subject><subject>Nanotechnology</subject><subject>Nucleation</subject><subject>Plating</subject><subject>Reaction kinetics</subject><subject>Scaffolds</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1uFDEQhVuIiITAliWyxIbNTPzTf7MMAwmROoAUsm6V22W1I7fd2N2KZscROA7n4SR4ZpKJxIaVy09fvarSy7I3jC4ZpfwsDtYuOeWM5pUonmUnrGRiUdZ89fxQM3qcvYzxjlLBeF69yI5FXotK0Pok-92YqTd-7I01HVlDkN6RL-C8NhLD2WWAsUeHOyn2iBNZ-2H00UxIbjrQ2ltFvgUcIaAickNgK1uQFgk4lWg3BW_3wgfjNchgOphMGnONU-8V0T6QWzsFiNOO-ohOheT_5-evi4BIdhvOQ_qmBrDk3HmF8VV2pMFGfP3wnma3F5--rz8vmq-XV-vzZtGlC4uF1BQFLwsUUEBelJDnq5xSVeRaVlIyxYGVlCkqalmKWrO641ApXdFUSFaL0-z93ncM_seMcWoHEztMFzn0c2x5SXPKas5EQt_9g975Obi0XaI4Y2LFqq3hck91wccYULdjMAOETctou8203WbaHjJNDW8fbGc5oDrgjyEmYLUH7o3FzX_s2pvrpnky_wsBPbKI</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Hu, Zongmin</creator><creator>Su, Hai</creator><creator>Zhou, Mengfan</creator><creator>Liu, Jinzhi</creator><creator>Wan, Yizao</creator><creator>Hu, Jimin</creator><creator>Xu, Yunhua</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1818-3661</orcidid></search><sort><creationdate>20220101</creationdate><title>Lithiophilic Carbon Nanofiber/Graphene Nanosheet Composite Scaffold Prepared by a Scalable and Controllable Biofabrication Method for Ultrastable Dendrite‐Free Lithium‐Metal Anodes</title><author>Hu, Zongmin ; Su, Hai ; Zhou, Mengfan ; Liu, Jinzhi ; Wan, Yizao ; Hu, Jimin ; Xu, Yunhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3735-bf0e3265e3a5a456a449400d54fb7bb1d2a1601d038b638f18c2a7df708c2b183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anodes</topic><topic>bacterial cellulose</topic><topic>biofabrication methods</topic><topic>Carbon</topic><topic>Carbon fibers</topic><topic>carbon nanofibers</topic><topic>Decay rate</topic><topic>Dendritic structure</topic><topic>Electrodes</topic><topic>Functional groups</topic><topic>Graphene</topic><topic>graphene nanosheets</topic><topic>Graphite</topic><topic>Lithium</topic><topic>lithium metal anodes</topic><topic>Nanofibers</topic><topic>Nanosheets</topic><topic>Nanotechnology</topic><topic>Nucleation</topic><topic>Plating</topic><topic>Reaction kinetics</topic><topic>Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Zongmin</creatorcontrib><creatorcontrib>Su, Hai</creatorcontrib><creatorcontrib>Zhou, Mengfan</creatorcontrib><creatorcontrib>Liu, Jinzhi</creatorcontrib><creatorcontrib>Wan, Yizao</creatorcontrib><creatorcontrib>Hu, Jimin</creatorcontrib><creatorcontrib>Xu, Yunhua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Zongmin</au><au>Su, Hai</au><au>Zhou, Mengfan</au><au>Liu, Jinzhi</au><au>Wan, Yizao</au><au>Hu, Jimin</au><au>Xu, Yunhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithiophilic Carbon Nanofiber/Graphene Nanosheet Composite Scaffold Prepared by a Scalable and Controllable Biofabrication Method for Ultrastable Dendrite‐Free Lithium‐Metal Anodes</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>18</volume><issue>3</issue><spage>e2104735</spage><epage>n/a</epage><pages>e2104735-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Li metal is regarded as a promising anode for high‐energy‐density Li batteries, while the limited cycle life and fast capacity decay caused by notorious Li dendrite growth seriously impedes its application. Herein, a robust and highly lithiophilic bacterial cellulose‐derived carbon nanofiber@reduced graphene oxide nanosheet (BC‐CNF@rGO) composite scaffold is fabricated as a host for dendrite‐free Li metal anode through an in situ biofabrication method. The abundant lithiophilic functional groups, conductive 3D network, and excellent mechanical property can effectively regulate uniform Li nucleation and deposition, enable fast reaction kinetics, and alleviate volume change. As a result, the BC‐CNF@rGO skeleton achieves exceptional Li plating/stripping performance with a high average Coulombic efficiency of 98.3% over 800 cycles, and a long cycle life span of 5000 h at 2 mA cm−2@1 mAh cm−2 with a low overpotential of ≈15 mV for lithium plating. Furthermore, full cells coupling BC‐CNF@rGO‐Li anode with LiFePO4 cathode achieves an unprecedented cycling stability with a long cycle life of 3000 cycles at 1 C. This work sheds light on a promising material design and fabrication strategy for realizing high performance Li metal batteries.
Lithiophilic carbon nanofiber@reduced graphene oxide nanosheet composite scaffolds are fabricated through an in situ biofabrication method. The abundant lithiophilic functional groups and conductive 3D network can effectively regulate uniform Li nucleation and deposition, realizing exceptional Li plating/stripping, and full cell cycling performance. The findings provide a promising material fabrication strategy for realizing high performance Li metal batteries.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34837308</pmid><doi>10.1002/smll.202104735</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1818-3661</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2022-01, Vol.18 (3), p.e2104735-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2604018213 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Anodes bacterial cellulose biofabrication methods Carbon Carbon fibers carbon nanofibers Decay rate Dendritic structure Electrodes Functional groups Graphene graphene nanosheets Graphite Lithium lithium metal anodes Nanofibers Nanosheets Nanotechnology Nucleation Plating Reaction kinetics Scaffolds |
title | Lithiophilic Carbon Nanofiber/Graphene Nanosheet Composite Scaffold Prepared by a Scalable and Controllable Biofabrication Method for Ultrastable Dendrite‐Free Lithium‐Metal Anodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T23%3A52%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithiophilic%20Carbon%20Nanofiber/Graphene%20Nanosheet%20Composite%20Scaffold%20Prepared%20by%20a%20Scalable%20and%20Controllable%20Biofabrication%20Method%20for%20Ultrastable%20Dendrite%E2%80%90Free%20Lithium%E2%80%90Metal%20Anodes&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Hu,%20Zongmin&rft.date=2022-01-01&rft.volume=18&rft.issue=3&rft.spage=e2104735&rft.epage=n/a&rft.pages=e2104735-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202104735&rft_dat=%3Cproquest_cross%3E2604018213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621139178&rft_id=info:pmid/34837308&rfr_iscdi=true |