Deep learning approaches for de novo drug design: An overview
De novo drug design is the process of generating novel lead compounds with desirable pharmacological and physiochemical properties. The application of deep learning (DL) in de novo drug design has become a hot topic, and many DL-based approaches have been developed for molecular generation tasks. Ge...
Gespeichert in:
Veröffentlicht in: | Current opinion in structural biology 2022-02, Vol.72, p.135-144 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 144 |
---|---|
container_issue | |
container_start_page | 135 |
container_title | Current opinion in structural biology |
container_volume | 72 |
creator | Wang, Mingyang Wang, Zhe Sun, Huiyong Wang, Jike Shen, Chao Weng, Gaoqi Chai, Xin Li, Honglin Cao, Dongsheng Hou, Tingjun |
description | De novo drug design is the process of generating novel lead compounds with desirable pharmacological and physiochemical properties. The application of deep learning (DL) in de novo drug design has become a hot topic, and many DL-based approaches have been developed for molecular generation tasks. Generally, these approaches were developed as per four frameworks: recurrent neural networks; encoder-decoder; reinforcement learning; and generative adversarial networks. In this review, we first introduced the molecular representation and assessment metrics used in DL-based de novo drug design. Then, we summarized the features of each architecture. Finally, the potential challenges and future directions of DL-based molecular generation were prospected. |
doi_str_mv | 10.1016/j.sbi.2021.10.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2604016388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0959440X21001433</els_id><sourcerecordid>2604016388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-8849d9ac8696d9f9e3ccca5cc20cd87892777302564ed882a18135c74733b6bd3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EouXxA7igHLkk-JXEBnGoylOqxAWk3izH3hRXaRLspoh_j6sWjpxWu5oZ7XwIXRCcEUyK62UWKpdRTEncM4zJARoTUcoUMzY_RGMsc5lyjucjdBLCEmNcEC6O0YhxQRlhYozu7gH6pAHtW9cuEt33vtPmA0JSdz6xkLTdpkusHxZxCW7R3iSTNuk24DcOvs7QUa2bAOf7eYreHx_eps_p7PXpZTqZpYYXdJ0KwaWV2ohCFlbWEpgxRufGUGysKIWkZVkyTPOCgxWCaiIIy03JS8aqorLsFF3tcuN3nwOEtVq5YKBpdAvdEBQtMI9AmBBRSnZS47sQPNSq926l_bciWG2pqaWK1NSW2vYUqUXP5T5-qFZg_xy_mKLgdieAWDIW9yoYB60B6zyYtbKd-yf-B-ZVe4c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604016388</pqid></control><display><type>article</type><title>Deep learning approaches for de novo drug design: An overview</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Wang, Mingyang ; Wang, Zhe ; Sun, Huiyong ; Wang, Jike ; Shen, Chao ; Weng, Gaoqi ; Chai, Xin ; Li, Honglin ; Cao, Dongsheng ; Hou, Tingjun</creator><creatorcontrib>Wang, Mingyang ; Wang, Zhe ; Sun, Huiyong ; Wang, Jike ; Shen, Chao ; Weng, Gaoqi ; Chai, Xin ; Li, Honglin ; Cao, Dongsheng ; Hou, Tingjun</creatorcontrib><description>De novo drug design is the process of generating novel lead compounds with desirable pharmacological and physiochemical properties. The application of deep learning (DL) in de novo drug design has become a hot topic, and many DL-based approaches have been developed for molecular generation tasks. Generally, these approaches were developed as per four frameworks: recurrent neural networks; encoder-decoder; reinforcement learning; and generative adversarial networks. In this review, we first introduced the molecular representation and assessment metrics used in DL-based de novo drug design. Then, we summarized the features of each architecture. Finally, the potential challenges and future directions of DL-based molecular generation were prospected.</description><identifier>ISSN: 0959-440X</identifier><identifier>EISSN: 1879-033X</identifier><identifier>DOI: 10.1016/j.sbi.2021.10.001</identifier><identifier>PMID: 34823138</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Deep Learning ; Drug Design ; Neural Networks, Computer</subject><ispartof>Current opinion in structural biology, 2022-02, Vol.72, p.135-144</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-8849d9ac8696d9f9e3ccca5cc20cd87892777302564ed882a18135c74733b6bd3</citedby><cites>FETCH-LOGICAL-c462t-8849d9ac8696d9f9e3ccca5cc20cd87892777302564ed882a18135c74733b6bd3</cites><orcidid>0000-0002-7107-7481 ; 0000-0001-7227-2580</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sbi.2021.10.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34823138$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Mingyang</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Sun, Huiyong</creatorcontrib><creatorcontrib>Wang, Jike</creatorcontrib><creatorcontrib>Shen, Chao</creatorcontrib><creatorcontrib>Weng, Gaoqi</creatorcontrib><creatorcontrib>Chai, Xin</creatorcontrib><creatorcontrib>Li, Honglin</creatorcontrib><creatorcontrib>Cao, Dongsheng</creatorcontrib><creatorcontrib>Hou, Tingjun</creatorcontrib><title>Deep learning approaches for de novo drug design: An overview</title><title>Current opinion in structural biology</title><addtitle>Curr Opin Struct Biol</addtitle><description>De novo drug design is the process of generating novel lead compounds with desirable pharmacological and physiochemical properties. The application of deep learning (DL) in de novo drug design has become a hot topic, and many DL-based approaches have been developed for molecular generation tasks. Generally, these approaches were developed as per four frameworks: recurrent neural networks; encoder-decoder; reinforcement learning; and generative adversarial networks. In this review, we first introduced the molecular representation and assessment metrics used in DL-based de novo drug design. Then, we summarized the features of each architecture. Finally, the potential challenges and future directions of DL-based molecular generation were prospected.</description><subject>Deep Learning</subject><subject>Drug Design</subject><subject>Neural Networks, Computer</subject><issn>0959-440X</issn><issn>1879-033X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtPwzAQhC0EouXxA7igHLkk-JXEBnGoylOqxAWk3izH3hRXaRLspoh_j6sWjpxWu5oZ7XwIXRCcEUyK62UWKpdRTEncM4zJARoTUcoUMzY_RGMsc5lyjucjdBLCEmNcEC6O0YhxQRlhYozu7gH6pAHtW9cuEt33vtPmA0JSdz6xkLTdpkusHxZxCW7R3iSTNuk24DcOvs7QUa2bAOf7eYreHx_eps_p7PXpZTqZpYYXdJ0KwaWV2ohCFlbWEpgxRufGUGysKIWkZVkyTPOCgxWCaiIIy03JS8aqorLsFF3tcuN3nwOEtVq5YKBpdAvdEBQtMI9AmBBRSnZS47sQPNSq926l_bciWG2pqaWK1NSW2vYUqUXP5T5-qFZg_xy_mKLgdieAWDIW9yoYB60B6zyYtbKd-yf-B-ZVe4c</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Wang, Mingyang</creator><creator>Wang, Zhe</creator><creator>Sun, Huiyong</creator><creator>Wang, Jike</creator><creator>Shen, Chao</creator><creator>Weng, Gaoqi</creator><creator>Chai, Xin</creator><creator>Li, Honglin</creator><creator>Cao, Dongsheng</creator><creator>Hou, Tingjun</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7107-7481</orcidid><orcidid>https://orcid.org/0000-0001-7227-2580</orcidid></search><sort><creationdate>202202</creationdate><title>Deep learning approaches for de novo drug design: An overview</title><author>Wang, Mingyang ; Wang, Zhe ; Sun, Huiyong ; Wang, Jike ; Shen, Chao ; Weng, Gaoqi ; Chai, Xin ; Li, Honglin ; Cao, Dongsheng ; Hou, Tingjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-8849d9ac8696d9f9e3ccca5cc20cd87892777302564ed882a18135c74733b6bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Deep Learning</topic><topic>Drug Design</topic><topic>Neural Networks, Computer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Mingyang</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Sun, Huiyong</creatorcontrib><creatorcontrib>Wang, Jike</creatorcontrib><creatorcontrib>Shen, Chao</creatorcontrib><creatorcontrib>Weng, Gaoqi</creatorcontrib><creatorcontrib>Chai, Xin</creatorcontrib><creatorcontrib>Li, Honglin</creatorcontrib><creatorcontrib>Cao, Dongsheng</creatorcontrib><creatorcontrib>Hou, Tingjun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Current opinion in structural biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Mingyang</au><au>Wang, Zhe</au><au>Sun, Huiyong</au><au>Wang, Jike</au><au>Shen, Chao</au><au>Weng, Gaoqi</au><au>Chai, Xin</au><au>Li, Honglin</au><au>Cao, Dongsheng</au><au>Hou, Tingjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning approaches for de novo drug design: An overview</atitle><jtitle>Current opinion in structural biology</jtitle><addtitle>Curr Opin Struct Biol</addtitle><date>2022-02</date><risdate>2022</risdate><volume>72</volume><spage>135</spage><epage>144</epage><pages>135-144</pages><issn>0959-440X</issn><eissn>1879-033X</eissn><abstract>De novo drug design is the process of generating novel lead compounds with desirable pharmacological and physiochemical properties. The application of deep learning (DL) in de novo drug design has become a hot topic, and many DL-based approaches have been developed for molecular generation tasks. Generally, these approaches were developed as per four frameworks: recurrent neural networks; encoder-decoder; reinforcement learning; and generative adversarial networks. In this review, we first introduced the molecular representation and assessment metrics used in DL-based de novo drug design. Then, we summarized the features of each architecture. Finally, the potential challenges and future directions of DL-based molecular generation were prospected.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>34823138</pmid><doi>10.1016/j.sbi.2021.10.001</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7107-7481</orcidid><orcidid>https://orcid.org/0000-0001-7227-2580</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0959-440X |
ispartof | Current opinion in structural biology, 2022-02, Vol.72, p.135-144 |
issn | 0959-440X 1879-033X |
language | eng |
recordid | cdi_proquest_miscellaneous_2604016388 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Deep Learning Drug Design Neural Networks, Computer |
title | Deep learning approaches for de novo drug design: An overview |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A33%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20approaches%20for%20de%20novo%20drug%20design:%20An%20overview&rft.jtitle=Current%20opinion%20in%20structural%20biology&rft.au=Wang,%20Mingyang&rft.date=2022-02&rft.volume=72&rft.spage=135&rft.epage=144&rft.pages=135-144&rft.issn=0959-440X&rft.eissn=1879-033X&rft_id=info:doi/10.1016/j.sbi.2021.10.001&rft_dat=%3Cproquest_cross%3E2604016388%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604016388&rft_id=info:pmid/34823138&rft_els_id=S0959440X21001433&rfr_iscdi=true |