Deep learning approaches for de novo drug design: An overview

De novo drug design is the process of generating novel lead compounds with desirable pharmacological and physiochemical properties. The application of deep learning (DL) in de novo drug design has become a hot topic, and many DL-based approaches have been developed for molecular generation tasks. Ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current opinion in structural biology 2022-02, Vol.72, p.135-144
Hauptverfasser: Wang, Mingyang, Wang, Zhe, Sun, Huiyong, Wang, Jike, Shen, Chao, Weng, Gaoqi, Chai, Xin, Li, Honglin, Cao, Dongsheng, Hou, Tingjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 144
container_issue
container_start_page 135
container_title Current opinion in structural biology
container_volume 72
creator Wang, Mingyang
Wang, Zhe
Sun, Huiyong
Wang, Jike
Shen, Chao
Weng, Gaoqi
Chai, Xin
Li, Honglin
Cao, Dongsheng
Hou, Tingjun
description De novo drug design is the process of generating novel lead compounds with desirable pharmacological and physiochemical properties. The application of deep learning (DL) in de novo drug design has become a hot topic, and many DL-based approaches have been developed for molecular generation tasks. Generally, these approaches were developed as per four frameworks: recurrent neural networks; encoder-decoder; reinforcement learning; and generative adversarial networks. In this review, we first introduced the molecular representation and assessment metrics used in DL-based de novo drug design. Then, we summarized the features of each architecture. Finally, the potential challenges and future directions of DL-based molecular generation were prospected.
doi_str_mv 10.1016/j.sbi.2021.10.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2604016388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0959440X21001433</els_id><sourcerecordid>2604016388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-8849d9ac8696d9f9e3ccca5cc20cd87892777302564ed882a18135c74733b6bd3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EouXxA7igHLkk-JXEBnGoylOqxAWk3izH3hRXaRLspoh_j6sWjpxWu5oZ7XwIXRCcEUyK62UWKpdRTEncM4zJARoTUcoUMzY_RGMsc5lyjucjdBLCEmNcEC6O0YhxQRlhYozu7gH6pAHtW9cuEt33vtPmA0JSdz6xkLTdpkusHxZxCW7R3iSTNuk24DcOvs7QUa2bAOf7eYreHx_eps_p7PXpZTqZpYYXdJ0KwaWV2ohCFlbWEpgxRufGUGysKIWkZVkyTPOCgxWCaiIIy03JS8aqorLsFF3tcuN3nwOEtVq5YKBpdAvdEBQtMI9AmBBRSnZS47sQPNSq926l_bciWG2pqaWK1NSW2vYUqUXP5T5-qFZg_xy_mKLgdieAWDIW9yoYB60B6zyYtbKd-yf-B-ZVe4c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604016388</pqid></control><display><type>article</type><title>Deep learning approaches for de novo drug design: An overview</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Wang, Mingyang ; Wang, Zhe ; Sun, Huiyong ; Wang, Jike ; Shen, Chao ; Weng, Gaoqi ; Chai, Xin ; Li, Honglin ; Cao, Dongsheng ; Hou, Tingjun</creator><creatorcontrib>Wang, Mingyang ; Wang, Zhe ; Sun, Huiyong ; Wang, Jike ; Shen, Chao ; Weng, Gaoqi ; Chai, Xin ; Li, Honglin ; Cao, Dongsheng ; Hou, Tingjun</creatorcontrib><description>De novo drug design is the process of generating novel lead compounds with desirable pharmacological and physiochemical properties. The application of deep learning (DL) in de novo drug design has become a hot topic, and many DL-based approaches have been developed for molecular generation tasks. Generally, these approaches were developed as per four frameworks: recurrent neural networks; encoder-decoder; reinforcement learning; and generative adversarial networks. In this review, we first introduced the molecular representation and assessment metrics used in DL-based de novo drug design. Then, we summarized the features of each architecture. Finally, the potential challenges and future directions of DL-based molecular generation were prospected.</description><identifier>ISSN: 0959-440X</identifier><identifier>EISSN: 1879-033X</identifier><identifier>DOI: 10.1016/j.sbi.2021.10.001</identifier><identifier>PMID: 34823138</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Deep Learning ; Drug Design ; Neural Networks, Computer</subject><ispartof>Current opinion in structural biology, 2022-02, Vol.72, p.135-144</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-8849d9ac8696d9f9e3ccca5cc20cd87892777302564ed882a18135c74733b6bd3</citedby><cites>FETCH-LOGICAL-c462t-8849d9ac8696d9f9e3ccca5cc20cd87892777302564ed882a18135c74733b6bd3</cites><orcidid>0000-0002-7107-7481 ; 0000-0001-7227-2580</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sbi.2021.10.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34823138$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Mingyang</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Sun, Huiyong</creatorcontrib><creatorcontrib>Wang, Jike</creatorcontrib><creatorcontrib>Shen, Chao</creatorcontrib><creatorcontrib>Weng, Gaoqi</creatorcontrib><creatorcontrib>Chai, Xin</creatorcontrib><creatorcontrib>Li, Honglin</creatorcontrib><creatorcontrib>Cao, Dongsheng</creatorcontrib><creatorcontrib>Hou, Tingjun</creatorcontrib><title>Deep learning approaches for de novo drug design: An overview</title><title>Current opinion in structural biology</title><addtitle>Curr Opin Struct Biol</addtitle><description>De novo drug design is the process of generating novel lead compounds with desirable pharmacological and physiochemical properties. The application of deep learning (DL) in de novo drug design has become a hot topic, and many DL-based approaches have been developed for molecular generation tasks. Generally, these approaches were developed as per four frameworks: recurrent neural networks; encoder-decoder; reinforcement learning; and generative adversarial networks. In this review, we first introduced the molecular representation and assessment metrics used in DL-based de novo drug design. Then, we summarized the features of each architecture. Finally, the potential challenges and future directions of DL-based molecular generation were prospected.</description><subject>Deep Learning</subject><subject>Drug Design</subject><subject>Neural Networks, Computer</subject><issn>0959-440X</issn><issn>1879-033X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtPwzAQhC0EouXxA7igHLkk-JXEBnGoylOqxAWk3izH3hRXaRLspoh_j6sWjpxWu5oZ7XwIXRCcEUyK62UWKpdRTEncM4zJARoTUcoUMzY_RGMsc5lyjucjdBLCEmNcEC6O0YhxQRlhYozu7gH6pAHtW9cuEt33vtPmA0JSdz6xkLTdpkusHxZxCW7R3iSTNuk24DcOvs7QUa2bAOf7eYreHx_eps_p7PXpZTqZpYYXdJ0KwaWV2ohCFlbWEpgxRufGUGysKIWkZVkyTPOCgxWCaiIIy03JS8aqorLsFF3tcuN3nwOEtVq5YKBpdAvdEBQtMI9AmBBRSnZS47sQPNSq926l_bciWG2pqaWK1NSW2vYUqUXP5T5-qFZg_xy_mKLgdieAWDIW9yoYB60B6zyYtbKd-yf-B-ZVe4c</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Wang, Mingyang</creator><creator>Wang, Zhe</creator><creator>Sun, Huiyong</creator><creator>Wang, Jike</creator><creator>Shen, Chao</creator><creator>Weng, Gaoqi</creator><creator>Chai, Xin</creator><creator>Li, Honglin</creator><creator>Cao, Dongsheng</creator><creator>Hou, Tingjun</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7107-7481</orcidid><orcidid>https://orcid.org/0000-0001-7227-2580</orcidid></search><sort><creationdate>202202</creationdate><title>Deep learning approaches for de novo drug design: An overview</title><author>Wang, Mingyang ; Wang, Zhe ; Sun, Huiyong ; Wang, Jike ; Shen, Chao ; Weng, Gaoqi ; Chai, Xin ; Li, Honglin ; Cao, Dongsheng ; Hou, Tingjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-8849d9ac8696d9f9e3ccca5cc20cd87892777302564ed882a18135c74733b6bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Deep Learning</topic><topic>Drug Design</topic><topic>Neural Networks, Computer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Mingyang</creatorcontrib><creatorcontrib>Wang, Zhe</creatorcontrib><creatorcontrib>Sun, Huiyong</creatorcontrib><creatorcontrib>Wang, Jike</creatorcontrib><creatorcontrib>Shen, Chao</creatorcontrib><creatorcontrib>Weng, Gaoqi</creatorcontrib><creatorcontrib>Chai, Xin</creatorcontrib><creatorcontrib>Li, Honglin</creatorcontrib><creatorcontrib>Cao, Dongsheng</creatorcontrib><creatorcontrib>Hou, Tingjun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Current opinion in structural biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Mingyang</au><au>Wang, Zhe</au><au>Sun, Huiyong</au><au>Wang, Jike</au><au>Shen, Chao</au><au>Weng, Gaoqi</au><au>Chai, Xin</au><au>Li, Honglin</au><au>Cao, Dongsheng</au><au>Hou, Tingjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning approaches for de novo drug design: An overview</atitle><jtitle>Current opinion in structural biology</jtitle><addtitle>Curr Opin Struct Biol</addtitle><date>2022-02</date><risdate>2022</risdate><volume>72</volume><spage>135</spage><epage>144</epage><pages>135-144</pages><issn>0959-440X</issn><eissn>1879-033X</eissn><abstract>De novo drug design is the process of generating novel lead compounds with desirable pharmacological and physiochemical properties. The application of deep learning (DL) in de novo drug design has become a hot topic, and many DL-based approaches have been developed for molecular generation tasks. Generally, these approaches were developed as per four frameworks: recurrent neural networks; encoder-decoder; reinforcement learning; and generative adversarial networks. In this review, we first introduced the molecular representation and assessment metrics used in DL-based de novo drug design. Then, we summarized the features of each architecture. Finally, the potential challenges and future directions of DL-based molecular generation were prospected.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>34823138</pmid><doi>10.1016/j.sbi.2021.10.001</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7107-7481</orcidid><orcidid>https://orcid.org/0000-0001-7227-2580</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0959-440X
ispartof Current opinion in structural biology, 2022-02, Vol.72, p.135-144
issn 0959-440X
1879-033X
language eng
recordid cdi_proquest_miscellaneous_2604016388
source MEDLINE; Elsevier ScienceDirect Journals
subjects Deep Learning
Drug Design
Neural Networks, Computer
title Deep learning approaches for de novo drug design: An overview
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A33%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20approaches%20for%20de%20novo%20drug%20design:%20An%20overview&rft.jtitle=Current%20opinion%20in%20structural%20biology&rft.au=Wang,%20Mingyang&rft.date=2022-02&rft.volume=72&rft.spage=135&rft.epage=144&rft.pages=135-144&rft.issn=0959-440X&rft.eissn=1879-033X&rft_id=info:doi/10.1016/j.sbi.2021.10.001&rft_dat=%3Cproquest_cross%3E2604016388%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604016388&rft_id=info:pmid/34823138&rft_els_id=S0959440X21001433&rfr_iscdi=true