Forced harmonic response analysis of nonlinear structures using describing functions

The dynamic response of multiple-DOF nonlinear structures is usually determined by numerical integration of the equations of motion, an approach which is computationally very expensive for steady-state response analysis of large structures. In this paper, an alternative semianalytical quasi-linear m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIAA journal 1993-07, Vol.31 (7), p.1313-1320
Hauptverfasser: Tanrikulu, Omer, Kuran, Bayindir, Ozguven, H. Nevzat, Imregun, Mehmet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1320
container_issue 7
container_start_page 1313
container_title AIAA journal
container_volume 31
creator Tanrikulu, Omer
Kuran, Bayindir
Ozguven, H. Nevzat
Imregun, Mehmet
description The dynamic response of multiple-DOF nonlinear structures is usually determined by numerical integration of the equations of motion, an approach which is computationally very expensive for steady-state response analysis of large structures. In this paper, an alternative semianalytical quasi-linear method based on the describing function formulation is proposed for the harmonic response analysis of structures with symmetrical nonlinearities. The equations of motion are converted to a set of nonlinear algebraic equations and the solution is obtained iteratively. The linear and nonlinear parts of the structure are dealt with separately, the former being represented by a constant linear receptance matrix and the latter by the generalized quasi-linear matrix which is updated at each iteration. A special technique that reduces the computation time significantly when the nonlinearities are localized is used with success to analyze large structures. The proposed method is fully compatible with standard modal analysis procedures. Several examples dealing with cubic stiffness, piecewise linear stiffness, and Coulomb friction type of nonlinearities are presented in the case of a 10-DOF structure. (Author (revised))
doi_str_mv 10.2514/3.11769
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_26038523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26038523</sourcerecordid><originalsourceid>FETCH-LOGICAL-a346t-6a09d600e466cba5e948dec93d9901e46bda3a8369826b59b8346a0ff86849ee3</originalsourceid><addsrcrecordid>eNptkEtLAzEUhYMoWB_4F2YhioupyWQmTZZSrAoFNxXchTuZRCPTpObOgP57oxbddHVf3zlwDyFnjE6rhtXXfMrYTKg9MmEN5yWXzfM-mVBKWcnqpjokR4hveapmkk3IahGTsV3xCmkdgzdFsriJAW0BAfpP9FhEV4QYeh8spAKHNJphzFQxog8vRWfRJN9-t24MZvBZfEIOHPRoT7f1mDwtblfz-3L5ePcwv1mWwGsxlAKo6gSlthbCtNBYVcvOGsU7pSjL27YDDpILJSvRNqqVWQbUOSlkrazlx-Ti13eT4vtocdBrj8b2PQQbR9SVoPn9imfw8hc0KSIm6_Qm-TWkT82o_k5Nc_2TWibPt5aABnqXIBiPf3gtGVeV-MfAA-i3OKacFu5wu9qFbc960zntxr4f7MfAvwCP34as</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26038523</pqid></control><display><type>article</type><title>Forced harmonic response analysis of nonlinear structures using describing functions</title><source>Alma/SFX Local Collection</source><creator>Tanrikulu, Omer ; Kuran, Bayindir ; Ozguven, H. Nevzat ; Imregun, Mehmet</creator><creatorcontrib>Tanrikulu, Omer ; Kuran, Bayindir ; Ozguven, H. Nevzat ; Imregun, Mehmet</creatorcontrib><description>The dynamic response of multiple-DOF nonlinear structures is usually determined by numerical integration of the equations of motion, an approach which is computationally very expensive for steady-state response analysis of large structures. In this paper, an alternative semianalytical quasi-linear method based on the describing function formulation is proposed for the harmonic response analysis of structures with symmetrical nonlinearities. The equations of motion are converted to a set of nonlinear algebraic equations and the solution is obtained iteratively. The linear and nonlinear parts of the structure are dealt with separately, the former being represented by a constant linear receptance matrix and the latter by the generalized quasi-linear matrix which is updated at each iteration. A special technique that reduces the computation time significantly when the nonlinearities are localized is used with success to analyze large structures. The proposed method is fully compatible with standard modal analysis procedures. Several examples dealing with cubic stiffness, piecewise linear stiffness, and Coulomb friction type of nonlinearities are presented in the case of a 10-DOF structure. (Author (revised))</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/3.11769</identifier><identifier>CODEN: AIAJAH</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>AIAA journal, 1993-07, Vol.31 (7), p.1313-1320</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a346t-6a09d600e466cba5e948dec93d9901e46bda3a8369826b59b8346a0ff86849ee3</citedby><cites>FETCH-LOGICAL-a346t-6a09d600e466cba5e948dec93d9901e46bda3a8369826b59b8346a0ff86849ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4813926$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tanrikulu, Omer</creatorcontrib><creatorcontrib>Kuran, Bayindir</creatorcontrib><creatorcontrib>Ozguven, H. Nevzat</creatorcontrib><creatorcontrib>Imregun, Mehmet</creatorcontrib><title>Forced harmonic response analysis of nonlinear structures using describing functions</title><title>AIAA journal</title><description>The dynamic response of multiple-DOF nonlinear structures is usually determined by numerical integration of the equations of motion, an approach which is computationally very expensive for steady-state response analysis of large structures. In this paper, an alternative semianalytical quasi-linear method based on the describing function formulation is proposed for the harmonic response analysis of structures with symmetrical nonlinearities. The equations of motion are converted to a set of nonlinear algebraic equations and the solution is obtained iteratively. The linear and nonlinear parts of the structure are dealt with separately, the former being represented by a constant linear receptance matrix and the latter by the generalized quasi-linear matrix which is updated at each iteration. A special technique that reduces the computation time significantly when the nonlinearities are localized is used with success to analyze large structures. The proposed method is fully compatible with standard modal analysis procedures. Several examples dealing with cubic stiffness, piecewise linear stiffness, and Coulomb friction type of nonlinearities are presented in the case of a 10-DOF structure. (Author (revised))</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNptkEtLAzEUhYMoWB_4F2YhioupyWQmTZZSrAoFNxXchTuZRCPTpObOgP57oxbddHVf3zlwDyFnjE6rhtXXfMrYTKg9MmEN5yWXzfM-mVBKWcnqpjokR4hveapmkk3IahGTsV3xCmkdgzdFsriJAW0BAfpP9FhEV4QYeh8spAKHNJphzFQxog8vRWfRJN9-t24MZvBZfEIOHPRoT7f1mDwtblfz-3L5ePcwv1mWwGsxlAKo6gSlthbCtNBYVcvOGsU7pSjL27YDDpILJSvRNqqVWQbUOSlkrazlx-Ti13eT4vtocdBrj8b2PQQbR9SVoPn9imfw8hc0KSIm6_Qm-TWkT82o_k5Nc_2TWibPt5aABnqXIBiPf3gtGVeV-MfAA-i3OKacFu5wu9qFbc960zntxr4f7MfAvwCP34as</recordid><startdate>19930701</startdate><enddate>19930701</enddate><creator>Tanrikulu, Omer</creator><creator>Kuran, Bayindir</creator><creator>Ozguven, H. Nevzat</creator><creator>Imregun, Mehmet</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19930701</creationdate><title>Forced harmonic response analysis of nonlinear structures using describing functions</title><author>Tanrikulu, Omer ; Kuran, Bayindir ; Ozguven, H. Nevzat ; Imregun, Mehmet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a346t-6a09d600e466cba5e948dec93d9901e46bda3a8369826b59b8346a0ff86849ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanrikulu, Omer</creatorcontrib><creatorcontrib>Kuran, Bayindir</creatorcontrib><creatorcontrib>Ozguven, H. Nevzat</creatorcontrib><creatorcontrib>Imregun, Mehmet</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanrikulu, Omer</au><au>Kuran, Bayindir</au><au>Ozguven, H. Nevzat</au><au>Imregun, Mehmet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forced harmonic response analysis of nonlinear structures using describing functions</atitle><jtitle>AIAA journal</jtitle><date>1993-07-01</date><risdate>1993</risdate><volume>31</volume><issue>7</issue><spage>1313</spage><epage>1320</epage><pages>1313-1320</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><coden>AIAJAH</coden><abstract>The dynamic response of multiple-DOF nonlinear structures is usually determined by numerical integration of the equations of motion, an approach which is computationally very expensive for steady-state response analysis of large structures. In this paper, an alternative semianalytical quasi-linear method based on the describing function formulation is proposed for the harmonic response analysis of structures with symmetrical nonlinearities. The equations of motion are converted to a set of nonlinear algebraic equations and the solution is obtained iteratively. The linear and nonlinear parts of the structure are dealt with separately, the former being represented by a constant linear receptance matrix and the latter by the generalized quasi-linear matrix which is updated at each iteration. A special technique that reduces the computation time significantly when the nonlinearities are localized is used with success to analyze large structures. The proposed method is fully compatible with standard modal analysis procedures. Several examples dealing with cubic stiffness, piecewise linear stiffness, and Coulomb friction type of nonlinearities are presented in the case of a 10-DOF structure. (Author (revised))</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/3.11769</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 1993-07, Vol.31 (7), p.1313-1320
issn 0001-1452
1533-385X
language eng
recordid cdi_proquest_miscellaneous_26038523
source Alma/SFX Local Collection
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Solid mechanics
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
title Forced harmonic response analysis of nonlinear structures using describing functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A33%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forced%20harmonic%20response%20analysis%20of%20nonlinear%20structures%20using%20describing%20functions&rft.jtitle=AIAA%20journal&rft.au=Tanrikulu,%20Omer&rft.date=1993-07-01&rft.volume=31&rft.issue=7&rft.spage=1313&rft.epage=1320&rft.pages=1313-1320&rft.issn=0001-1452&rft.eissn=1533-385X&rft.coden=AIAJAH&rft_id=info:doi/10.2514/3.11769&rft_dat=%3Cproquest_pasca%3E26038523%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26038523&rft_id=info:pmid/&rfr_iscdi=true