Fundamental frequency analysis of laminated rectangular plates by differential quadrature method

In this paper a differential quadrature method is presented for computation of the fundamental frequency of a thin laminated rectangular plate. The partial differential equations of motion for free vibration are solved for the boundary conditions by approximating them by substituting weighted polyno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 1993-07, Vol.36 (14), p.2341-2356
Hauptverfasser: Farsa, Jalaleddin, Kukreti, Anant R., Bert, Charles W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2356
container_issue 14
container_start_page 2341
container_title International journal for numerical methods in engineering
container_volume 36
creator Farsa, Jalaleddin
Kukreti, Anant R.
Bert, Charles W.
description In this paper a differential quadrature method is presented for computation of the fundamental frequency of a thin laminated rectangular plate. The partial differential equations of motion for free vibration are solved for the boundary conditions by approximating them by substituting weighted polynomials functions for the differential operator. By doing this, the coupled partial differential equations of motion are reduced to sets of homogeneous algebraic equations. These sets of homogeneous algebraic equations are combined to give a set of general eigenvalue equations for the problem. Three types of laminated plate problems, which include symmetric, antisymmetric cross‐ply, and symmetric, balanced angle‐ply laminates, are analysed by the method and the results obtained are compared with solutions reported in the literature for other numerical methods. The effects of the level of discretization on the accuracy and rate of convergence of the results are also discussed. The method presented gives accurate results and is found to use not much computer time.
doi_str_mv 10.1002/nme.1620361403
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26033131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26033131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4163-3221516a0ae6427fa7b5e7233710fac69f1d6a094b083a78bc4efd73001926373</originalsourceid><addsrcrecordid>eNqNkM1v1DAQxS1EJZYtV84-IG7Z-iOx4yMqbam0FAmB2puZTcZgcJytnajkv8fVVkWcinywZL_3m3mPkNecbThj4iQOuOFKMKl4zeQzsuLM6IoJpp-TVRGYqjEtf0Fe5vyTMc4bJlfk2_kcexgwThCoS3g7Y-wWChHCkn2mo6MBBh9hwp4m7CaI3-cAie5Decp0t9DeO4epEHxB3M7QJ5jmhHTA6cfYH5MjByHjq4d7Tb6en305_VBtP11cnr7bVl3NlaykELzhChigqoV2oHcNaiGl5sxBp4zjffk19Y61EnS762p0vZYliBFKarkmbw_cfRpLiDzZwecOQ4CI45ytUExKXs5_CIVpS4NrsjkIuzTmnNDZffIDpMVyZu8bt6Vx-7fxYnjzQIbcQXAJYufzo6vWRrX1_QLmILvzAZcnoPbq49k_I6qD1-cJfz96If2ySkvd2OurC3vTyO3n982NvZZ_ALjXoRs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26029840</pqid></control><display><type>article</type><title>Fundamental frequency analysis of laminated rectangular plates by differential quadrature method</title><source>Access via Wiley Online Library</source><creator>Farsa, Jalaleddin ; Kukreti, Anant R. ; Bert, Charles W.</creator><creatorcontrib>Farsa, Jalaleddin ; Kukreti, Anant R. ; Bert, Charles W.</creatorcontrib><description>In this paper a differential quadrature method is presented for computation of the fundamental frequency of a thin laminated rectangular plate. The partial differential equations of motion for free vibration are solved for the boundary conditions by approximating them by substituting weighted polynomials functions for the differential operator. By doing this, the coupled partial differential equations of motion are reduced to sets of homogeneous algebraic equations. These sets of homogeneous algebraic equations are combined to give a set of general eigenvalue equations for the problem. Three types of laminated plate problems, which include symmetric, antisymmetric cross‐ply, and symmetric, balanced angle‐ply laminates, are analysed by the method and the results obtained are compared with solutions reported in the literature for other numerical methods. The effects of the level of discretization on the accuracy and rate of convergence of the results are also discussed. The method presented gives accurate results and is found to use not much computer time.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.1620361403</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Ltd</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>International journal for numerical methods in engineering, 1993-07, Vol.36 (14), p.2341-2356</ispartof><rights>Copyright © 1993 John Wiley &amp; Sons, Ltd</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4163-3221516a0ae6427fa7b5e7233710fac69f1d6a094b083a78bc4efd73001926373</citedby><cites>FETCH-LOGICAL-c4163-3221516a0ae6427fa7b5e7233710fac69f1d6a094b083a78bc4efd73001926373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.1620361403$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.1620361403$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4796841$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Farsa, Jalaleddin</creatorcontrib><creatorcontrib>Kukreti, Anant R.</creatorcontrib><creatorcontrib>Bert, Charles W.</creatorcontrib><title>Fundamental frequency analysis of laminated rectangular plates by differential quadrature method</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>In this paper a differential quadrature method is presented for computation of the fundamental frequency of a thin laminated rectangular plate. The partial differential equations of motion for free vibration are solved for the boundary conditions by approximating them by substituting weighted polynomials functions for the differential operator. By doing this, the coupled partial differential equations of motion are reduced to sets of homogeneous algebraic equations. These sets of homogeneous algebraic equations are combined to give a set of general eigenvalue equations for the problem. Three types of laminated plate problems, which include symmetric, antisymmetric cross‐ply, and symmetric, balanced angle‐ply laminates, are analysed by the method and the results obtained are compared with solutions reported in the literature for other numerical methods. The effects of the level of discretization on the accuracy and rate of convergence of the results are also discussed. The method presented gives accurate results and is found to use not much computer time.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqNkM1v1DAQxS1EJZYtV84-IG7Z-iOx4yMqbam0FAmB2puZTcZgcJytnajkv8fVVkWcinywZL_3m3mPkNecbThj4iQOuOFKMKl4zeQzsuLM6IoJpp-TVRGYqjEtf0Fe5vyTMc4bJlfk2_kcexgwThCoS3g7Y-wWChHCkn2mo6MBBh9hwp4m7CaI3-cAie5Decp0t9DeO4epEHxB3M7QJ5jmhHTA6cfYH5MjByHjq4d7Tb6en305_VBtP11cnr7bVl3NlaykELzhChigqoV2oHcNaiGl5sxBp4zjffk19Y61EnS762p0vZYliBFKarkmbw_cfRpLiDzZwecOQ4CI45ytUExKXs5_CIVpS4NrsjkIuzTmnNDZffIDpMVyZu8bt6Vx-7fxYnjzQIbcQXAJYufzo6vWRrX1_QLmILvzAZcnoPbq49k_I6qD1-cJfz96If2ySkvd2OurC3vTyO3n982NvZZ_ALjXoRs</recordid><startdate>19930730</startdate><enddate>19930730</enddate><creator>Farsa, Jalaleddin</creator><creator>Kukreti, Anant R.</creator><creator>Bert, Charles W.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SM</scope><scope>7SR</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>19930730</creationdate><title>Fundamental frequency analysis of laminated rectangular plates by differential quadrature method</title><author>Farsa, Jalaleddin ; Kukreti, Anant R. ; Bert, Charles W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4163-3221516a0ae6427fa7b5e7233710fac69f1d6a094b083a78bc4efd73001926373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farsa, Jalaleddin</creatorcontrib><creatorcontrib>Kukreti, Anant R.</creatorcontrib><creatorcontrib>Bert, Charles W.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Earthquake Engineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farsa, Jalaleddin</au><au>Kukreti, Anant R.</au><au>Bert, Charles W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fundamental frequency analysis of laminated rectangular plates by differential quadrature method</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>1993-07-30</date><risdate>1993</risdate><volume>36</volume><issue>14</issue><spage>2341</spage><epage>2356</epage><pages>2341-2356</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>In this paper a differential quadrature method is presented for computation of the fundamental frequency of a thin laminated rectangular plate. The partial differential equations of motion for free vibration are solved for the boundary conditions by approximating them by substituting weighted polynomials functions for the differential operator. By doing this, the coupled partial differential equations of motion are reduced to sets of homogeneous algebraic equations. These sets of homogeneous algebraic equations are combined to give a set of general eigenvalue equations for the problem. Three types of laminated plate problems, which include symmetric, antisymmetric cross‐ply, and symmetric, balanced angle‐ply laminates, are analysed by the method and the results obtained are compared with solutions reported in the literature for other numerical methods. The effects of the level of discretization on the accuracy and rate of convergence of the results are also discussed. The method presented gives accurate results and is found to use not much computer time.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nme.1620361403</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 1993-07, Vol.36 (14), p.2341-2356
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_miscellaneous_26033131
source Access via Wiley Online Library
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Solid mechanics
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
title Fundamental frequency analysis of laminated rectangular plates by differential quadrature method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A21%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fundamental%20frequency%20analysis%20of%20laminated%20rectangular%20plates%20by%20differential%20quadrature%20method&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Farsa,%20Jalaleddin&rft.date=1993-07-30&rft.volume=36&rft.issue=14&rft.spage=2341&rft.epage=2356&rft.pages=2341-2356&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.1620361403&rft_dat=%3Cproquest_cross%3E26033131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26029840&rft_id=info:pmid/&rfr_iscdi=true