Float-zone crystal growth of bismuth germanate and numerical simulation

Bismuth germanium Oxide BGO ( Bi 12 GeO 20) single crystals are known to have great potential for technological applications in solid-state devices. Our work involves crystal growth of this material from the melt using a float-zone (FZ) technique in both terrestrial and microgravity environments. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 1993, Vol.134 (3), p.266-274
Hauptverfasser: Quon, D.H.H., Chehab, S., Aota, J., Kuriakose, A.K., Wang, S.S.B., Saghir, M.Z., Chen, H.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 274
container_issue 3
container_start_page 266
container_title Journal of crystal growth
container_volume 134
creator Quon, D.H.H.
Chehab, S.
Aota, J.
Kuriakose, A.K.
Wang, S.S.B.
Saghir, M.Z.
Chen, H.L.
description Bismuth germanium Oxide BGO ( Bi 12 GeO 20) single crystals are known to have great potential for technological applications in solid-state devices. Our work involves crystal growth of this material from the melt using a float-zone (FZ) technique in both terrestrial and microgravity environments. The ground-based (normal gravity) experiments are presently being carried out, and the ensuing results will be used to optimize the microgravity experiments which will be executed aboard the SPACEHAB Shuttle mission scheduled for April 1994. The crystal growth technique that is being developed requires BGO feed rods of high quality. The methods developed to produce these, and the important float zone parameters such as temperature, translation rate and uniformity of radial heat distribution of the furnace for the crystal growth are discussed. An analysis of the effect of shape and convection patterns on the materials, using numerical simulation to compare the theoretical predictions with the experimental results is also presented.
doi_str_mv 10.1016/0022-0248(93)90135-J
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26028951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>002202489390135J</els_id><sourcerecordid>26028951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-214d4e41c30e035cc9aed1a5c4500fbd65f33a7b0ecdfb30b7125846ab88a9003</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwDxgyIARD4BzHqbMgoYoWqkosMFuOcylGiV3sBFR-PS6tGJnupPve3b1HyDmFGwq0uAXIshSyXFyV7LoEyni6OCAjKiYs5XF4SEZ_yDE5CeEdIOoojMh81jrVp9_OYqL9JvSqTVbeffVviWuSyoRuiO0Kfaes6jFRtk7s0KE3OpLBdEOreuPsKTlqVBvwbF_H5HX28DJ9TJfP86fp_TLVrMj7NKN5nWNONQMExrUuFdZUcZ3HP5uqLnjDmJpUgLpuKgbVhGZc5IWqhFAlABuTy93etXcfA4ZediZobFtl0Q1BZgVkouQ0gvkO1N6F4LGRa2865TeSgtymJreRyG0ksmTyNzW5iLKL_X4VosPGK6tN-NMywSel4BG722EYvX4a9DJog1ZjbTzqXtbO_H_nB6aygPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26028951</pqid></control><display><type>article</type><title>Float-zone crystal growth of bismuth germanate and numerical simulation</title><source>Elsevier ScienceDirect Journals</source><creator>Quon, D.H.H. ; Chehab, S. ; Aota, J. ; Kuriakose, A.K. ; Wang, S.S.B. ; Saghir, M.Z. ; Chen, H.L.</creator><creatorcontrib>Quon, D.H.H. ; Chehab, S. ; Aota, J. ; Kuriakose, A.K. ; Wang, S.S.B. ; Saghir, M.Z. ; Chen, H.L.</creatorcontrib><description>Bismuth germanium Oxide BGO ( Bi 12 GeO 20) single crystals are known to have great potential for technological applications in solid-state devices. Our work involves crystal growth of this material from the melt using a float-zone (FZ) technique in both terrestrial and microgravity environments. The ground-based (normal gravity) experiments are presently being carried out, and the ensuing results will be used to optimize the microgravity experiments which will be executed aboard the SPACEHAB Shuttle mission scheduled for April 1994. The crystal growth technique that is being developed requires BGO feed rods of high quality. The methods developed to produce these, and the important float zone parameters such as temperature, translation rate and uniformity of radial heat distribution of the furnace for the crystal growth are discussed. An analysis of the effect of shape and convection patterns on the materials, using numerical simulation to compare the theoretical predictions with the experimental results is also presented.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/0022-0248(93)90135-J</identifier><identifier>CODEN: JCRGAE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Growth from melts; zone melting and refining ; Growth in microgravity environments ; Materials science ; Methods of crystal growth; physics of crystal growth ; Physics</subject><ispartof>Journal of crystal growth, 1993, Vol.134 (3), p.266-274</ispartof><rights>1993</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-214d4e41c30e035cc9aed1a5c4500fbd65f33a7b0ecdfb30b7125846ab88a9003</citedby><cites>FETCH-LOGICAL-c364t-214d4e41c30e035cc9aed1a5c4500fbd65f33a7b0ecdfb30b7125846ab88a9003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0022-0248(93)90135-J$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,4012,27906,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3857985$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Quon, D.H.H.</creatorcontrib><creatorcontrib>Chehab, S.</creatorcontrib><creatorcontrib>Aota, J.</creatorcontrib><creatorcontrib>Kuriakose, A.K.</creatorcontrib><creatorcontrib>Wang, S.S.B.</creatorcontrib><creatorcontrib>Saghir, M.Z.</creatorcontrib><creatorcontrib>Chen, H.L.</creatorcontrib><title>Float-zone crystal growth of bismuth germanate and numerical simulation</title><title>Journal of crystal growth</title><description>Bismuth germanium Oxide BGO ( Bi 12 GeO 20) single crystals are known to have great potential for technological applications in solid-state devices. Our work involves crystal growth of this material from the melt using a float-zone (FZ) technique in both terrestrial and microgravity environments. The ground-based (normal gravity) experiments are presently being carried out, and the ensuing results will be used to optimize the microgravity experiments which will be executed aboard the SPACEHAB Shuttle mission scheduled for April 1994. The crystal growth technique that is being developed requires BGO feed rods of high quality. The methods developed to produce these, and the important float zone parameters such as temperature, translation rate and uniformity of radial heat distribution of the furnace for the crystal growth are discussed. An analysis of the effect of shape and convection patterns on the materials, using numerical simulation to compare the theoretical predictions with the experimental results is also presented.</description><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Growth from melts; zone melting and refining</subject><subject>Growth in microgravity environments</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Physics</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwDxgyIARD4BzHqbMgoYoWqkosMFuOcylGiV3sBFR-PS6tGJnupPve3b1HyDmFGwq0uAXIshSyXFyV7LoEyni6OCAjKiYs5XF4SEZ_yDE5CeEdIOoojMh81jrVp9_OYqL9JvSqTVbeffVviWuSyoRuiO0Kfaes6jFRtk7s0KE3OpLBdEOreuPsKTlqVBvwbF_H5HX28DJ9TJfP86fp_TLVrMj7NKN5nWNONQMExrUuFdZUcZ3HP5uqLnjDmJpUgLpuKgbVhGZc5IWqhFAlABuTy93etXcfA4ZediZobFtl0Q1BZgVkouQ0gvkO1N6F4LGRa2865TeSgtymJreRyG0ksmTyNzW5iLKL_X4VosPGK6tN-NMywSel4BG722EYvX4a9DJog1ZjbTzqXtbO_H_nB6aygPA</recordid><startdate>1993</startdate><enddate>1993</enddate><creator>Quon, D.H.H.</creator><creator>Chehab, S.</creator><creator>Aota, J.</creator><creator>Kuriakose, A.K.</creator><creator>Wang, S.S.B.</creator><creator>Saghir, M.Z.</creator><creator>Chen, H.L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1993</creationdate><title>Float-zone crystal growth of bismuth germanate and numerical simulation</title><author>Quon, D.H.H. ; Chehab, S. ; Aota, J. ; Kuriakose, A.K. ; Wang, S.S.B. ; Saghir, M.Z. ; Chen, H.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-214d4e41c30e035cc9aed1a5c4500fbd65f33a7b0ecdfb30b7125846ab88a9003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Growth from melts; zone melting and refining</topic><topic>Growth in microgravity environments</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quon, D.H.H.</creatorcontrib><creatorcontrib>Chehab, S.</creatorcontrib><creatorcontrib>Aota, J.</creatorcontrib><creatorcontrib>Kuriakose, A.K.</creatorcontrib><creatorcontrib>Wang, S.S.B.</creatorcontrib><creatorcontrib>Saghir, M.Z.</creatorcontrib><creatorcontrib>Chen, H.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quon, D.H.H.</au><au>Chehab, S.</au><au>Aota, J.</au><au>Kuriakose, A.K.</au><au>Wang, S.S.B.</au><au>Saghir, M.Z.</au><au>Chen, H.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Float-zone crystal growth of bismuth germanate and numerical simulation</atitle><jtitle>Journal of crystal growth</jtitle><date>1993</date><risdate>1993</risdate><volume>134</volume><issue>3</issue><spage>266</spage><epage>274</epage><pages>266-274</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><coden>JCRGAE</coden><abstract>Bismuth germanium Oxide BGO ( Bi 12 GeO 20) single crystals are known to have great potential for technological applications in solid-state devices. Our work involves crystal growth of this material from the melt using a float-zone (FZ) technique in both terrestrial and microgravity environments. The ground-based (normal gravity) experiments are presently being carried out, and the ensuing results will be used to optimize the microgravity experiments which will be executed aboard the SPACEHAB Shuttle mission scheduled for April 1994. The crystal growth technique that is being developed requires BGO feed rods of high quality. The methods developed to produce these, and the important float zone parameters such as temperature, translation rate and uniformity of radial heat distribution of the furnace for the crystal growth are discussed. An analysis of the effect of shape and convection patterns on the materials, using numerical simulation to compare the theoretical predictions with the experimental results is also presented.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0022-0248(93)90135-J</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 1993, Vol.134 (3), p.266-274
issn 0022-0248
1873-5002
language eng
recordid cdi_proquest_miscellaneous_26028951
source Elsevier ScienceDirect Journals
subjects Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Growth from melts
zone melting and refining
Growth in microgravity environments
Materials science
Methods of crystal growth
physics of crystal growth
Physics
title Float-zone crystal growth of bismuth germanate and numerical simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A52%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Float-zone%20crystal%20growth%20of%20bismuth%20germanate%20and%20numerical%20simulation&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Quon,%20D.H.H.&rft.date=1993&rft.volume=134&rft.issue=3&rft.spage=266&rft.epage=274&rft.pages=266-274&rft.issn=0022-0248&rft.eissn=1873-5002&rft.coden=JCRGAE&rft_id=info:doi/10.1016/0022-0248(93)90135-J&rft_dat=%3Cproquest_cross%3E26028951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26028951&rft_id=info:pmid/&rft_els_id=002202489390135J&rfr_iscdi=true