Mechanical actions of dendritic-spine enlargement on presynaptic exocytosis

Synaptic transmission involves cell-to-cell communication at the synaptic junction between two neurons, and chemical and electrical forms of this process have been extensively studied. In the brain, excitatory glutamatergic synapses are often made on dendritic spines that enlarge during learning 1 –...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2021-12, Vol.600 (7890), p.686-689
Hauptverfasser: Ucar, Hasan, Watanabe, Satoshi, Noguchi, Jun, Morimoto, Yuichi, Iino, Yusuke, Yagishita, Sho, Takahashi, Noriko, Kasai, Haruo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 689
container_issue 7890
container_start_page 686
container_title Nature (London)
container_volume 600
creator Ucar, Hasan
Watanabe, Satoshi
Noguchi, Jun
Morimoto, Yuichi
Iino, Yusuke
Yagishita, Sho
Takahashi, Noriko
Kasai, Haruo
description Synaptic transmission involves cell-to-cell communication at the synaptic junction between two neurons, and chemical and electrical forms of this process have been extensively studied. In the brain, excitatory glutamatergic synapses are often made on dendritic spines that enlarge during learning 1 – 5 . As dendritic spines and the presynaptic terminals are tightly connected with the synaptic cleft 6 , the enlargement may have mechanical effects on presynaptic functions 7 . Here we show that fine and transient pushing of the presynaptic boutons with a glass pipette markedly promotes both the evoked release of glutamate and the assembly of SNARE (soluble N -ethylmaleimide-sensitive factor attachment protein receptor) proteins 8 – 12 —as measured by Förster resonance transfer (FRET) and fluorescence lifetime imaging—in rat slice culture preparations 13 . Both of these effects persisted for more than 20 minutes. The increased presynaptic FRET was independent of cytosolic calcium (Ca 2+ ), but dependent on the assembly of SNARE proteins and actin polymerization in the boutons. Notably, a low hypertonic solution of sucrose (20 mM) had facilitatory effects on both the FRET and the evoked release without inducing spontaneous release, in striking contrast with a high hypertonic sucrose solution (300 mM), which induced exocytosis by itself 14 . Finally, spine enlargement induced by two-photon glutamate uncaging enhanced the evoked release and the FRET only when the spines pushed the boutons by their elongation. Thus, we have identified a mechanosensory and transduction mechanism 15 in the presynaptic boutons, in which the evoked release of glutamate is enhanced for more than 20 min. A mechanism of mechanosensation and transduction in the presynaptic boutons is identified, in which sensing of fine pressure leads to enhanced neurotransmitter release.
doi_str_mv 10.1038/s41586-021-04125-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2602641029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A687699769</galeid><sourcerecordid>A687699769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c607t-cde266494455ba4ba947d1592addf989473ed5fd7526f478464b58fdb9509cfe3</originalsourceid><addsrcrecordid>eNp90l1r1TAYB_AiijtOv4AXUtyNXnQmaZIml2P4MpwIvlyHNHlSM9qkS1rY-fZmnuk8cpASSpLf8xAe_lX1HKNTjFrxJlPMBG8QwQ2imLCme1BtMO14Q7noHlYbhIhokGj5UfUk5yuEEMMdfVwdtVRgyTnfVB8_gfmhgzd6rLVZfAy5jq62EGzyizdNnn2AGsKo0wAThKWOoZ4T5G3QcwE13ESzXWL2-Wn1yOkxw7O7_3H1_d3bb-cfmsvP7y_Ozy4bw1G3NMYC4ZxKShnrNe21pJ3FTBJtrZOi7FqwzNmOEe5oJyinPRPO9pIhaRy0x9WrXd85xesV8qImnw2Mow4Q16wIR4RTjIgs9OQfehXXFMrrisKcEME4uleDHkH54OKStLltqs7KJLmUZRXVHFADBEh6jAGcL8d7_uUBb2Z_rf5GpwdQ-SxM3hzs-nqvoJgFbpZBrzmri69f9i3ZWZNizgmcmpOfdNoqjNRthNQuQqpESP2KkOpK0Yu7ka39BPZPye_MFNDuQC5XYYB0P9P_tP0JjhnNqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616228560</pqid></control><display><type>article</type><title>Mechanical actions of dendritic-spine enlargement on presynaptic exocytosis</title><source>Nature Journals Online</source><source>Alma/SFX Local Collection</source><creator>Ucar, Hasan ; Watanabe, Satoshi ; Noguchi, Jun ; Morimoto, Yuichi ; Iino, Yusuke ; Yagishita, Sho ; Takahashi, Noriko ; Kasai, Haruo</creator><creatorcontrib>Ucar, Hasan ; Watanabe, Satoshi ; Noguchi, Jun ; Morimoto, Yuichi ; Iino, Yusuke ; Yagishita, Sho ; Takahashi, Noriko ; Kasai, Haruo</creatorcontrib><description>Synaptic transmission involves cell-to-cell communication at the synaptic junction between two neurons, and chemical and electrical forms of this process have been extensively studied. In the brain, excitatory glutamatergic synapses are often made on dendritic spines that enlarge during learning 1 – 5 . As dendritic spines and the presynaptic terminals are tightly connected with the synaptic cleft 6 , the enlargement may have mechanical effects on presynaptic functions 7 . Here we show that fine and transient pushing of the presynaptic boutons with a glass pipette markedly promotes both the evoked release of glutamate and the assembly of SNARE (soluble N -ethylmaleimide-sensitive factor attachment protein receptor) proteins 8 – 12 —as measured by Förster resonance transfer (FRET) and fluorescence lifetime imaging—in rat slice culture preparations 13 . Both of these effects persisted for more than 20 minutes. The increased presynaptic FRET was independent of cytosolic calcium (Ca 2+ ), but dependent on the assembly of SNARE proteins and actin polymerization in the boutons. Notably, a low hypertonic solution of sucrose (20 mM) had facilitatory effects on both the FRET and the evoked release without inducing spontaneous release, in striking contrast with a high hypertonic sucrose solution (300 mM), which induced exocytosis by itself 14 . Finally, spine enlargement induced by two-photon glutamate uncaging enhanced the evoked release and the FRET only when the spines pushed the boutons by their elongation. Thus, we have identified a mechanosensory and transduction mechanism 15 in the presynaptic boutons, in which the evoked release of glutamate is enhanced for more than 20 min. A mechanism of mechanosensation and transduction in the presynaptic boutons is identified, in which sensing of fine pressure leads to enhanced neurotransmitter release.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-021-04125-7</identifier><identifier>PMID: 34819666</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/106 ; 14/33 ; 14/63 ; 14/69 ; 42/35 ; 631/378/2591/2592 ; 631/378/2597/2600 ; 631/378/548/2589 ; 631/57/1481 ; 631/57/2282 ; 9/10 ; 9/74 ; 96/10 ; 96/95 ; Actin ; Analysis ; Assembly ; Calcium ions ; Cell culture ; Cell interactions ; Dendrites ; Dendritic spines ; Dendritic structure ; Elongation ; Enlargement ; Exocytosis ; Fluorescence ; Fluorescence resonance energy transfer ; Glutamatergic transmission ; Health aspects ; Humanities and Social Sciences ; Kinases ; Mechanical properties ; multidisciplinary ; N-Ethylmaleimide-sensitive protein ; Neural transmission ; Neuroimaging ; Physiological aspects ; Polymerization ; Presynapse ; Proteins ; Science ; Science (multidisciplinary) ; SNAP receptors ; Spine ; Sucrose ; Synapses ; Synaptic transmission</subject><ispartof>Nature (London), 2021-12, Vol.600 (7890), p.686-689</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 23-Dec 30, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c607t-cde266494455ba4ba947d1592addf989473ed5fd7526f478464b58fdb9509cfe3</citedby><cites>FETCH-LOGICAL-c607t-cde266494455ba4ba947d1592addf989473ed5fd7526f478464b58fdb9509cfe3</cites><orcidid>0000-0003-2327-9027 ; 0000-0001-9037-533X ; 0000-0002-1750-5297 ; 0000-0003-1025-1690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34819666$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ucar, Hasan</creatorcontrib><creatorcontrib>Watanabe, Satoshi</creatorcontrib><creatorcontrib>Noguchi, Jun</creatorcontrib><creatorcontrib>Morimoto, Yuichi</creatorcontrib><creatorcontrib>Iino, Yusuke</creatorcontrib><creatorcontrib>Yagishita, Sho</creatorcontrib><creatorcontrib>Takahashi, Noriko</creatorcontrib><creatorcontrib>Kasai, Haruo</creatorcontrib><title>Mechanical actions of dendritic-spine enlargement on presynaptic exocytosis</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Synaptic transmission involves cell-to-cell communication at the synaptic junction between two neurons, and chemical and electrical forms of this process have been extensively studied. In the brain, excitatory glutamatergic synapses are often made on dendritic spines that enlarge during learning 1 – 5 . As dendritic spines and the presynaptic terminals are tightly connected with the synaptic cleft 6 , the enlargement may have mechanical effects on presynaptic functions 7 . Here we show that fine and transient pushing of the presynaptic boutons with a glass pipette markedly promotes both the evoked release of glutamate and the assembly of SNARE (soluble N -ethylmaleimide-sensitive factor attachment protein receptor) proteins 8 – 12 —as measured by Förster resonance transfer (FRET) and fluorescence lifetime imaging—in rat slice culture preparations 13 . Both of these effects persisted for more than 20 minutes. The increased presynaptic FRET was independent of cytosolic calcium (Ca 2+ ), but dependent on the assembly of SNARE proteins and actin polymerization in the boutons. Notably, a low hypertonic solution of sucrose (20 mM) had facilitatory effects on both the FRET and the evoked release without inducing spontaneous release, in striking contrast with a high hypertonic sucrose solution (300 mM), which induced exocytosis by itself 14 . Finally, spine enlargement induced by two-photon glutamate uncaging enhanced the evoked release and the FRET only when the spines pushed the boutons by their elongation. Thus, we have identified a mechanosensory and transduction mechanism 15 in the presynaptic boutons, in which the evoked release of glutamate is enhanced for more than 20 min. A mechanism of mechanosensation and transduction in the presynaptic boutons is identified, in which sensing of fine pressure leads to enhanced neurotransmitter release.</description><subject>13/106</subject><subject>14/33</subject><subject>14/63</subject><subject>14/69</subject><subject>42/35</subject><subject>631/378/2591/2592</subject><subject>631/378/2597/2600</subject><subject>631/378/548/2589</subject><subject>631/57/1481</subject><subject>631/57/2282</subject><subject>9/10</subject><subject>9/74</subject><subject>96/10</subject><subject>96/95</subject><subject>Actin</subject><subject>Analysis</subject><subject>Assembly</subject><subject>Calcium ions</subject><subject>Cell culture</subject><subject>Cell interactions</subject><subject>Dendrites</subject><subject>Dendritic spines</subject><subject>Dendritic structure</subject><subject>Elongation</subject><subject>Enlargement</subject><subject>Exocytosis</subject><subject>Fluorescence</subject><subject>Fluorescence resonance energy transfer</subject><subject>Glutamatergic transmission</subject><subject>Health aspects</subject><subject>Humanities and Social Sciences</subject><subject>Kinases</subject><subject>Mechanical properties</subject><subject>multidisciplinary</subject><subject>N-Ethylmaleimide-sensitive protein</subject><subject>Neural transmission</subject><subject>Neuroimaging</subject><subject>Physiological aspects</subject><subject>Polymerization</subject><subject>Presynapse</subject><subject>Proteins</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>SNAP receptors</subject><subject>Spine</subject><subject>Sucrose</subject><subject>Synapses</subject><subject>Synaptic transmission</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90l1r1TAYB_AiijtOv4AXUtyNXnQmaZIml2P4MpwIvlyHNHlSM9qkS1rY-fZmnuk8cpASSpLf8xAe_lX1HKNTjFrxJlPMBG8QwQ2imLCme1BtMO14Q7noHlYbhIhokGj5UfUk5yuEEMMdfVwdtVRgyTnfVB8_gfmhgzd6rLVZfAy5jq62EGzyizdNnn2AGsKo0wAThKWOoZ4T5G3QcwE13ESzXWL2-Wn1yOkxw7O7_3H1_d3bb-cfmsvP7y_Ozy4bw1G3NMYC4ZxKShnrNe21pJ3FTBJtrZOi7FqwzNmOEe5oJyinPRPO9pIhaRy0x9WrXd85xesV8qImnw2Mow4Q16wIR4RTjIgs9OQfehXXFMrrisKcEME4uleDHkH54OKStLltqs7KJLmUZRXVHFADBEh6jAGcL8d7_uUBb2Z_rf5GpwdQ-SxM3hzs-nqvoJgFbpZBrzmri69f9i3ZWZNizgmcmpOfdNoqjNRthNQuQqpESP2KkOpK0Yu7ka39BPZPye_MFNDuQC5XYYB0P9P_tP0JjhnNqg</recordid><startdate>20211223</startdate><enddate>20211223</enddate><creator>Ucar, Hasan</creator><creator>Watanabe, Satoshi</creator><creator>Noguchi, Jun</creator><creator>Morimoto, Yuichi</creator><creator>Iino, Yusuke</creator><creator>Yagishita, Sho</creator><creator>Takahashi, Noriko</creator><creator>Kasai, Haruo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2327-9027</orcidid><orcidid>https://orcid.org/0000-0001-9037-533X</orcidid><orcidid>https://orcid.org/0000-0002-1750-5297</orcidid><orcidid>https://orcid.org/0000-0003-1025-1690</orcidid></search><sort><creationdate>20211223</creationdate><title>Mechanical actions of dendritic-spine enlargement on presynaptic exocytosis</title><author>Ucar, Hasan ; Watanabe, Satoshi ; Noguchi, Jun ; Morimoto, Yuichi ; Iino, Yusuke ; Yagishita, Sho ; Takahashi, Noriko ; Kasai, Haruo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c607t-cde266494455ba4ba947d1592addf989473ed5fd7526f478464b58fdb9509cfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13/106</topic><topic>14/33</topic><topic>14/63</topic><topic>14/69</topic><topic>42/35</topic><topic>631/378/2591/2592</topic><topic>631/378/2597/2600</topic><topic>631/378/548/2589</topic><topic>631/57/1481</topic><topic>631/57/2282</topic><topic>9/10</topic><topic>9/74</topic><topic>96/10</topic><topic>96/95</topic><topic>Actin</topic><topic>Analysis</topic><topic>Assembly</topic><topic>Calcium ions</topic><topic>Cell culture</topic><topic>Cell interactions</topic><topic>Dendrites</topic><topic>Dendritic spines</topic><topic>Dendritic structure</topic><topic>Elongation</topic><topic>Enlargement</topic><topic>Exocytosis</topic><topic>Fluorescence</topic><topic>Fluorescence resonance energy transfer</topic><topic>Glutamatergic transmission</topic><topic>Health aspects</topic><topic>Humanities and Social Sciences</topic><topic>Kinases</topic><topic>Mechanical properties</topic><topic>multidisciplinary</topic><topic>N-Ethylmaleimide-sensitive protein</topic><topic>Neural transmission</topic><topic>Neuroimaging</topic><topic>Physiological aspects</topic><topic>Polymerization</topic><topic>Presynapse</topic><topic>Proteins</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>SNAP receptors</topic><topic>Spine</topic><topic>Sucrose</topic><topic>Synapses</topic><topic>Synaptic transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ucar, Hasan</creatorcontrib><creatorcontrib>Watanabe, Satoshi</creatorcontrib><creatorcontrib>Noguchi, Jun</creatorcontrib><creatorcontrib>Morimoto, Yuichi</creatorcontrib><creatorcontrib>Iino, Yusuke</creatorcontrib><creatorcontrib>Yagishita, Sho</creatorcontrib><creatorcontrib>Takahashi, Noriko</creatorcontrib><creatorcontrib>Kasai, Haruo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ucar, Hasan</au><au>Watanabe, Satoshi</au><au>Noguchi, Jun</au><au>Morimoto, Yuichi</au><au>Iino, Yusuke</au><au>Yagishita, Sho</au><au>Takahashi, Noriko</au><au>Kasai, Haruo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical actions of dendritic-spine enlargement on presynaptic exocytosis</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2021-12-23</date><risdate>2021</risdate><volume>600</volume><issue>7890</issue><spage>686</spage><epage>689</epage><pages>686-689</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Synaptic transmission involves cell-to-cell communication at the synaptic junction between two neurons, and chemical and electrical forms of this process have been extensively studied. In the brain, excitatory glutamatergic synapses are often made on dendritic spines that enlarge during learning 1 – 5 . As dendritic spines and the presynaptic terminals are tightly connected with the synaptic cleft 6 , the enlargement may have mechanical effects on presynaptic functions 7 . Here we show that fine and transient pushing of the presynaptic boutons with a glass pipette markedly promotes both the evoked release of glutamate and the assembly of SNARE (soluble N -ethylmaleimide-sensitive factor attachment protein receptor) proteins 8 – 12 —as measured by Förster resonance transfer (FRET) and fluorescence lifetime imaging—in rat slice culture preparations 13 . Both of these effects persisted for more than 20 minutes. The increased presynaptic FRET was independent of cytosolic calcium (Ca 2+ ), but dependent on the assembly of SNARE proteins and actin polymerization in the boutons. Notably, a low hypertonic solution of sucrose (20 mM) had facilitatory effects on both the FRET and the evoked release without inducing spontaneous release, in striking contrast with a high hypertonic sucrose solution (300 mM), which induced exocytosis by itself 14 . Finally, spine enlargement induced by two-photon glutamate uncaging enhanced the evoked release and the FRET only when the spines pushed the boutons by their elongation. Thus, we have identified a mechanosensory and transduction mechanism 15 in the presynaptic boutons, in which the evoked release of glutamate is enhanced for more than 20 min. A mechanism of mechanosensation and transduction in the presynaptic boutons is identified, in which sensing of fine pressure leads to enhanced neurotransmitter release.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34819666</pmid><doi>10.1038/s41586-021-04125-7</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-2327-9027</orcidid><orcidid>https://orcid.org/0000-0001-9037-533X</orcidid><orcidid>https://orcid.org/0000-0002-1750-5297</orcidid><orcidid>https://orcid.org/0000-0003-1025-1690</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2021-12, Vol.600 (7890), p.686-689
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_2602641029
source Nature Journals Online; Alma/SFX Local Collection
subjects 13/106
14/33
14/63
14/69
42/35
631/378/2591/2592
631/378/2597/2600
631/378/548/2589
631/57/1481
631/57/2282
9/10
9/74
96/10
96/95
Actin
Analysis
Assembly
Calcium ions
Cell culture
Cell interactions
Dendrites
Dendritic spines
Dendritic structure
Elongation
Enlargement
Exocytosis
Fluorescence
Fluorescence resonance energy transfer
Glutamatergic transmission
Health aspects
Humanities and Social Sciences
Kinases
Mechanical properties
multidisciplinary
N-Ethylmaleimide-sensitive protein
Neural transmission
Neuroimaging
Physiological aspects
Polymerization
Presynapse
Proteins
Science
Science (multidisciplinary)
SNAP receptors
Spine
Sucrose
Synapses
Synaptic transmission
title Mechanical actions of dendritic-spine enlargement on presynaptic exocytosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T05%3A24%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20actions%20of%20dendritic-spine%20enlargement%20on%20presynaptic%20exocytosis&rft.jtitle=Nature%20(London)&rft.au=Ucar,%20Hasan&rft.date=2021-12-23&rft.volume=600&rft.issue=7890&rft.spage=686&rft.epage=689&rft.pages=686-689&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-021-04125-7&rft_dat=%3Cgale_proqu%3EA687699769%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616228560&rft_id=info:pmid/34819666&rft_galeid=A687699769&rfr_iscdi=true