Mechanical actions of dendritic-spine enlargement on presynaptic exocytosis
Synaptic transmission involves cell-to-cell communication at the synaptic junction between two neurons, and chemical and electrical forms of this process have been extensively studied. In the brain, excitatory glutamatergic synapses are often made on dendritic spines that enlarge during learning 1 –...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2021-12, Vol.600 (7890), p.686-689 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 689 |
---|---|
container_issue | 7890 |
container_start_page | 686 |
container_title | Nature (London) |
container_volume | 600 |
creator | Ucar, Hasan Watanabe, Satoshi Noguchi, Jun Morimoto, Yuichi Iino, Yusuke Yagishita, Sho Takahashi, Noriko Kasai, Haruo |
description | Synaptic transmission involves cell-to-cell communication at the synaptic junction between two neurons, and chemical and electrical forms of this process have been extensively studied. In the brain, excitatory glutamatergic synapses are often made on dendritic spines that enlarge during learning
1
–
5
. As dendritic spines and the presynaptic terminals are tightly connected with the synaptic cleft
6
, the enlargement may have mechanical effects on presynaptic functions
7
. Here we show that fine and transient pushing of the presynaptic boutons with a glass pipette markedly promotes both the evoked release of glutamate and the assembly of SNARE (soluble
N
-ethylmaleimide-sensitive factor attachment protein receptor) proteins
8
–
12
—as measured by Förster resonance transfer (FRET) and fluorescence lifetime imaging—in rat slice culture preparations
13
. Both of these effects persisted for more than 20 minutes. The increased presynaptic FRET was independent of cytosolic calcium (Ca
2+
), but dependent on the assembly of SNARE proteins and actin polymerization in the boutons. Notably, a low hypertonic solution of sucrose (20 mM) had facilitatory effects on both the FRET and the evoked release without inducing spontaneous release, in striking contrast with a high hypertonic sucrose solution (300 mM), which induced exocytosis by itself
14
. Finally, spine enlargement induced by two-photon glutamate uncaging enhanced the evoked release and the FRET only when the spines pushed the boutons by their elongation. Thus, we have identified a mechanosensory and transduction mechanism
15
in the presynaptic boutons, in which the evoked release of glutamate is enhanced for more than 20 min.
A mechanism of mechanosensation and transduction in the presynaptic boutons is identified, in which sensing of fine pressure leads to enhanced neurotransmitter release. |
doi_str_mv | 10.1038/s41586-021-04125-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2602641029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A687699769</galeid><sourcerecordid>A687699769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c607t-cde266494455ba4ba947d1592addf989473ed5fd7526f478464b58fdb9509cfe3</originalsourceid><addsrcrecordid>eNp90l1r1TAYB_AiijtOv4AXUtyNXnQmaZIml2P4MpwIvlyHNHlSM9qkS1rY-fZmnuk8cpASSpLf8xAe_lX1HKNTjFrxJlPMBG8QwQ2imLCme1BtMO14Q7noHlYbhIhokGj5UfUk5yuEEMMdfVwdtVRgyTnfVB8_gfmhgzd6rLVZfAy5jq62EGzyizdNnn2AGsKo0wAThKWOoZ4T5G3QcwE13ESzXWL2-Wn1yOkxw7O7_3H1_d3bb-cfmsvP7y_Ozy4bw1G3NMYC4ZxKShnrNe21pJ3FTBJtrZOi7FqwzNmOEe5oJyinPRPO9pIhaRy0x9WrXd85xesV8qImnw2Mow4Q16wIR4RTjIgs9OQfehXXFMrrisKcEME4uleDHkH54OKStLltqs7KJLmUZRXVHFADBEh6jAGcL8d7_uUBb2Z_rf5GpwdQ-SxM3hzs-nqvoJgFbpZBrzmri69f9i3ZWZNizgmcmpOfdNoqjNRthNQuQqpESP2KkOpK0Yu7ka39BPZPye_MFNDuQC5XYYB0P9P_tP0JjhnNqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616228560</pqid></control><display><type>article</type><title>Mechanical actions of dendritic-spine enlargement on presynaptic exocytosis</title><source>Nature Journals Online</source><source>Alma/SFX Local Collection</source><creator>Ucar, Hasan ; Watanabe, Satoshi ; Noguchi, Jun ; Morimoto, Yuichi ; Iino, Yusuke ; Yagishita, Sho ; Takahashi, Noriko ; Kasai, Haruo</creator><creatorcontrib>Ucar, Hasan ; Watanabe, Satoshi ; Noguchi, Jun ; Morimoto, Yuichi ; Iino, Yusuke ; Yagishita, Sho ; Takahashi, Noriko ; Kasai, Haruo</creatorcontrib><description>Synaptic transmission involves cell-to-cell communication at the synaptic junction between two neurons, and chemical and electrical forms of this process have been extensively studied. In the brain, excitatory glutamatergic synapses are often made on dendritic spines that enlarge during learning
1
–
5
. As dendritic spines and the presynaptic terminals are tightly connected with the synaptic cleft
6
, the enlargement may have mechanical effects on presynaptic functions
7
. Here we show that fine and transient pushing of the presynaptic boutons with a glass pipette markedly promotes both the evoked release of glutamate and the assembly of SNARE (soluble
N
-ethylmaleimide-sensitive factor attachment protein receptor) proteins
8
–
12
—as measured by Förster resonance transfer (FRET) and fluorescence lifetime imaging—in rat slice culture preparations
13
. Both of these effects persisted for more than 20 minutes. The increased presynaptic FRET was independent of cytosolic calcium (Ca
2+
), but dependent on the assembly of SNARE proteins and actin polymerization in the boutons. Notably, a low hypertonic solution of sucrose (20 mM) had facilitatory effects on both the FRET and the evoked release without inducing spontaneous release, in striking contrast with a high hypertonic sucrose solution (300 mM), which induced exocytosis by itself
14
. Finally, spine enlargement induced by two-photon glutamate uncaging enhanced the evoked release and the FRET only when the spines pushed the boutons by their elongation. Thus, we have identified a mechanosensory and transduction mechanism
15
in the presynaptic boutons, in which the evoked release of glutamate is enhanced for more than 20 min.
A mechanism of mechanosensation and transduction in the presynaptic boutons is identified, in which sensing of fine pressure leads to enhanced neurotransmitter release.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-021-04125-7</identifier><identifier>PMID: 34819666</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/106 ; 14/33 ; 14/63 ; 14/69 ; 42/35 ; 631/378/2591/2592 ; 631/378/2597/2600 ; 631/378/548/2589 ; 631/57/1481 ; 631/57/2282 ; 9/10 ; 9/74 ; 96/10 ; 96/95 ; Actin ; Analysis ; Assembly ; Calcium ions ; Cell culture ; Cell interactions ; Dendrites ; Dendritic spines ; Dendritic structure ; Elongation ; Enlargement ; Exocytosis ; Fluorescence ; Fluorescence resonance energy transfer ; Glutamatergic transmission ; Health aspects ; Humanities and Social Sciences ; Kinases ; Mechanical properties ; multidisciplinary ; N-Ethylmaleimide-sensitive protein ; Neural transmission ; Neuroimaging ; Physiological aspects ; Polymerization ; Presynapse ; Proteins ; Science ; Science (multidisciplinary) ; SNAP receptors ; Spine ; Sucrose ; Synapses ; Synaptic transmission</subject><ispartof>Nature (London), 2021-12, Vol.600 (7890), p.686-689</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 23-Dec 30, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c607t-cde266494455ba4ba947d1592addf989473ed5fd7526f478464b58fdb9509cfe3</citedby><cites>FETCH-LOGICAL-c607t-cde266494455ba4ba947d1592addf989473ed5fd7526f478464b58fdb9509cfe3</cites><orcidid>0000-0003-2327-9027 ; 0000-0001-9037-533X ; 0000-0002-1750-5297 ; 0000-0003-1025-1690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34819666$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ucar, Hasan</creatorcontrib><creatorcontrib>Watanabe, Satoshi</creatorcontrib><creatorcontrib>Noguchi, Jun</creatorcontrib><creatorcontrib>Morimoto, Yuichi</creatorcontrib><creatorcontrib>Iino, Yusuke</creatorcontrib><creatorcontrib>Yagishita, Sho</creatorcontrib><creatorcontrib>Takahashi, Noriko</creatorcontrib><creatorcontrib>Kasai, Haruo</creatorcontrib><title>Mechanical actions of dendritic-spine enlargement on presynaptic exocytosis</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Synaptic transmission involves cell-to-cell communication at the synaptic junction between two neurons, and chemical and electrical forms of this process have been extensively studied. In the brain, excitatory glutamatergic synapses are often made on dendritic spines that enlarge during learning
1
–
5
. As dendritic spines and the presynaptic terminals are tightly connected with the synaptic cleft
6
, the enlargement may have mechanical effects on presynaptic functions
7
. Here we show that fine and transient pushing of the presynaptic boutons with a glass pipette markedly promotes both the evoked release of glutamate and the assembly of SNARE (soluble
N
-ethylmaleimide-sensitive factor attachment protein receptor) proteins
8
–
12
—as measured by Förster resonance transfer (FRET) and fluorescence lifetime imaging—in rat slice culture preparations
13
. Both of these effects persisted for more than 20 minutes. The increased presynaptic FRET was independent of cytosolic calcium (Ca
2+
), but dependent on the assembly of SNARE proteins and actin polymerization in the boutons. Notably, a low hypertonic solution of sucrose (20 mM) had facilitatory effects on both the FRET and the evoked release without inducing spontaneous release, in striking contrast with a high hypertonic sucrose solution (300 mM), which induced exocytosis by itself
14
. Finally, spine enlargement induced by two-photon glutamate uncaging enhanced the evoked release and the FRET only when the spines pushed the boutons by their elongation. Thus, we have identified a mechanosensory and transduction mechanism
15
in the presynaptic boutons, in which the evoked release of glutamate is enhanced for more than 20 min.
A mechanism of mechanosensation and transduction in the presynaptic boutons is identified, in which sensing of fine pressure leads to enhanced neurotransmitter release.</description><subject>13/106</subject><subject>14/33</subject><subject>14/63</subject><subject>14/69</subject><subject>42/35</subject><subject>631/378/2591/2592</subject><subject>631/378/2597/2600</subject><subject>631/378/548/2589</subject><subject>631/57/1481</subject><subject>631/57/2282</subject><subject>9/10</subject><subject>9/74</subject><subject>96/10</subject><subject>96/95</subject><subject>Actin</subject><subject>Analysis</subject><subject>Assembly</subject><subject>Calcium ions</subject><subject>Cell culture</subject><subject>Cell interactions</subject><subject>Dendrites</subject><subject>Dendritic spines</subject><subject>Dendritic structure</subject><subject>Elongation</subject><subject>Enlargement</subject><subject>Exocytosis</subject><subject>Fluorescence</subject><subject>Fluorescence resonance energy transfer</subject><subject>Glutamatergic transmission</subject><subject>Health aspects</subject><subject>Humanities and Social Sciences</subject><subject>Kinases</subject><subject>Mechanical properties</subject><subject>multidisciplinary</subject><subject>N-Ethylmaleimide-sensitive protein</subject><subject>Neural transmission</subject><subject>Neuroimaging</subject><subject>Physiological aspects</subject><subject>Polymerization</subject><subject>Presynapse</subject><subject>Proteins</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>SNAP receptors</subject><subject>Spine</subject><subject>Sucrose</subject><subject>Synapses</subject><subject>Synaptic transmission</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90l1r1TAYB_AiijtOv4AXUtyNXnQmaZIml2P4MpwIvlyHNHlSM9qkS1rY-fZmnuk8cpASSpLf8xAe_lX1HKNTjFrxJlPMBG8QwQ2imLCme1BtMO14Q7noHlYbhIhokGj5UfUk5yuEEMMdfVwdtVRgyTnfVB8_gfmhgzd6rLVZfAy5jq62EGzyizdNnn2AGsKo0wAThKWOoZ4T5G3QcwE13ESzXWL2-Wn1yOkxw7O7_3H1_d3bb-cfmsvP7y_Ozy4bw1G3NMYC4ZxKShnrNe21pJ3FTBJtrZOi7FqwzNmOEe5oJyinPRPO9pIhaRy0x9WrXd85xesV8qImnw2Mow4Q16wIR4RTjIgs9OQfehXXFMrrisKcEME4uleDHkH54OKStLltqs7KJLmUZRXVHFADBEh6jAGcL8d7_uUBb2Z_rf5GpwdQ-SxM3hzs-nqvoJgFbpZBrzmri69f9i3ZWZNizgmcmpOfdNoqjNRthNQuQqpESP2KkOpK0Yu7ka39BPZPye_MFNDuQC5XYYB0P9P_tP0JjhnNqg</recordid><startdate>20211223</startdate><enddate>20211223</enddate><creator>Ucar, Hasan</creator><creator>Watanabe, Satoshi</creator><creator>Noguchi, Jun</creator><creator>Morimoto, Yuichi</creator><creator>Iino, Yusuke</creator><creator>Yagishita, Sho</creator><creator>Takahashi, Noriko</creator><creator>Kasai, Haruo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2327-9027</orcidid><orcidid>https://orcid.org/0000-0001-9037-533X</orcidid><orcidid>https://orcid.org/0000-0002-1750-5297</orcidid><orcidid>https://orcid.org/0000-0003-1025-1690</orcidid></search><sort><creationdate>20211223</creationdate><title>Mechanical actions of dendritic-spine enlargement on presynaptic exocytosis</title><author>Ucar, Hasan ; Watanabe, Satoshi ; Noguchi, Jun ; Morimoto, Yuichi ; Iino, Yusuke ; Yagishita, Sho ; Takahashi, Noriko ; Kasai, Haruo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c607t-cde266494455ba4ba947d1592addf989473ed5fd7526f478464b58fdb9509cfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13/106</topic><topic>14/33</topic><topic>14/63</topic><topic>14/69</topic><topic>42/35</topic><topic>631/378/2591/2592</topic><topic>631/378/2597/2600</topic><topic>631/378/548/2589</topic><topic>631/57/1481</topic><topic>631/57/2282</topic><topic>9/10</topic><topic>9/74</topic><topic>96/10</topic><topic>96/95</topic><topic>Actin</topic><topic>Analysis</topic><topic>Assembly</topic><topic>Calcium ions</topic><topic>Cell culture</topic><topic>Cell interactions</topic><topic>Dendrites</topic><topic>Dendritic spines</topic><topic>Dendritic structure</topic><topic>Elongation</topic><topic>Enlargement</topic><topic>Exocytosis</topic><topic>Fluorescence</topic><topic>Fluorescence resonance energy transfer</topic><topic>Glutamatergic transmission</topic><topic>Health aspects</topic><topic>Humanities and Social Sciences</topic><topic>Kinases</topic><topic>Mechanical properties</topic><topic>multidisciplinary</topic><topic>N-Ethylmaleimide-sensitive protein</topic><topic>Neural transmission</topic><topic>Neuroimaging</topic><topic>Physiological aspects</topic><topic>Polymerization</topic><topic>Presynapse</topic><topic>Proteins</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>SNAP receptors</topic><topic>Spine</topic><topic>Sucrose</topic><topic>Synapses</topic><topic>Synaptic transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ucar, Hasan</creatorcontrib><creatorcontrib>Watanabe, Satoshi</creatorcontrib><creatorcontrib>Noguchi, Jun</creatorcontrib><creatorcontrib>Morimoto, Yuichi</creatorcontrib><creatorcontrib>Iino, Yusuke</creatorcontrib><creatorcontrib>Yagishita, Sho</creatorcontrib><creatorcontrib>Takahashi, Noriko</creatorcontrib><creatorcontrib>Kasai, Haruo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ucar, Hasan</au><au>Watanabe, Satoshi</au><au>Noguchi, Jun</au><au>Morimoto, Yuichi</au><au>Iino, Yusuke</au><au>Yagishita, Sho</au><au>Takahashi, Noriko</au><au>Kasai, Haruo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical actions of dendritic-spine enlargement on presynaptic exocytosis</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2021-12-23</date><risdate>2021</risdate><volume>600</volume><issue>7890</issue><spage>686</spage><epage>689</epage><pages>686-689</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Synaptic transmission involves cell-to-cell communication at the synaptic junction between two neurons, and chemical and electrical forms of this process have been extensively studied. In the brain, excitatory glutamatergic synapses are often made on dendritic spines that enlarge during learning
1
–
5
. As dendritic spines and the presynaptic terminals are tightly connected with the synaptic cleft
6
, the enlargement may have mechanical effects on presynaptic functions
7
. Here we show that fine and transient pushing of the presynaptic boutons with a glass pipette markedly promotes both the evoked release of glutamate and the assembly of SNARE (soluble
N
-ethylmaleimide-sensitive factor attachment protein receptor) proteins
8
–
12
—as measured by Förster resonance transfer (FRET) and fluorescence lifetime imaging—in rat slice culture preparations
13
. Both of these effects persisted for more than 20 minutes. The increased presynaptic FRET was independent of cytosolic calcium (Ca
2+
), but dependent on the assembly of SNARE proteins and actin polymerization in the boutons. Notably, a low hypertonic solution of sucrose (20 mM) had facilitatory effects on both the FRET and the evoked release without inducing spontaneous release, in striking contrast with a high hypertonic sucrose solution (300 mM), which induced exocytosis by itself
14
. Finally, spine enlargement induced by two-photon glutamate uncaging enhanced the evoked release and the FRET only when the spines pushed the boutons by their elongation. Thus, we have identified a mechanosensory and transduction mechanism
15
in the presynaptic boutons, in which the evoked release of glutamate is enhanced for more than 20 min.
A mechanism of mechanosensation and transduction in the presynaptic boutons is identified, in which sensing of fine pressure leads to enhanced neurotransmitter release.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34819666</pmid><doi>10.1038/s41586-021-04125-7</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-2327-9027</orcidid><orcidid>https://orcid.org/0000-0001-9037-533X</orcidid><orcidid>https://orcid.org/0000-0002-1750-5297</orcidid><orcidid>https://orcid.org/0000-0003-1025-1690</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2021-12, Vol.600 (7890), p.686-689 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2602641029 |
source | Nature Journals Online; Alma/SFX Local Collection |
subjects | 13/106 14/33 14/63 14/69 42/35 631/378/2591/2592 631/378/2597/2600 631/378/548/2589 631/57/1481 631/57/2282 9/10 9/74 96/10 96/95 Actin Analysis Assembly Calcium ions Cell culture Cell interactions Dendrites Dendritic spines Dendritic structure Elongation Enlargement Exocytosis Fluorescence Fluorescence resonance energy transfer Glutamatergic transmission Health aspects Humanities and Social Sciences Kinases Mechanical properties multidisciplinary N-Ethylmaleimide-sensitive protein Neural transmission Neuroimaging Physiological aspects Polymerization Presynapse Proteins Science Science (multidisciplinary) SNAP receptors Spine Sucrose Synapses Synaptic transmission |
title | Mechanical actions of dendritic-spine enlargement on presynaptic exocytosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T05%3A24%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20actions%20of%20dendritic-spine%20enlargement%20on%20presynaptic%20exocytosis&rft.jtitle=Nature%20(London)&rft.au=Ucar,%20Hasan&rft.date=2021-12-23&rft.volume=600&rft.issue=7890&rft.spage=686&rft.epage=689&rft.pages=686-689&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-021-04125-7&rft_dat=%3Cgale_proqu%3EA687699769%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616228560&rft_id=info:pmid/34819666&rft_galeid=A687699769&rfr_iscdi=true |