A magnetic topological insulator in two-dimensional EuCd2Bi2: giant gap with robust topology against magnetic transitions

Magnetic topological states open up exciting opportunities for exploring fundamental topological quantum physics and innovative design of topological spintronics devices. However, the nontrivial topologies, for most known magnetic topological states, are usually associated with and may be heavily de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials horizons 2021-03, Vol.8 (3), p.956-961
Hauptverfasser: Wang, Hao, Mao, Ning, Hu, Xiangting, Dai, Ying, Huang, Baibiao, Niu, Chengwang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 961
container_issue 3
container_start_page 956
container_title Materials horizons
container_volume 8
creator Wang, Hao
Mao, Ning
Hu, Xiangting
Dai, Ying
Huang, Baibiao
Niu, Chengwang
description Magnetic topological states open up exciting opportunities for exploring fundamental topological quantum physics and innovative design of topological spintronics devices. However, the nontrivial topologies, for most known magnetic topological states, are usually associated with and may be heavily deformed by fragile magnetism. Here, using a tight-binding model and first-principles calculations, we demonstrate that a highly robust magnetic topological insulator phase, which remains intact under both ferromagnetic and antiferromagnetic configurations, can emerge in two-dimensional EuCd2Bi2 quintuple layers. Because of spin–orbital coupling, an inverted gap with intrinsic band inversions occuring simultaneously for up and down spin channels is obtained, accompanied by a nonzero spin Chern number [Formula Omitted] and a pair of gapless edge states, and remarkably the magnitude of the nontrivial band gap for EuCd2Bi2 reaches as much as 750 meV. Moreover, the robustness of the magnetic TI phase is further confirmed by rotating the magnetization directions, indicating that EuCd2Bi2 represents a promising material for understanding and utilizing the topological insulating states in two-dimensional spin–orbit magnets.
doi_str_mv 10.1039/d0mh01214a
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2602635699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2503720651</sourcerecordid><originalsourceid>FETCH-LOGICAL-g253t-4dc3ae53ee3774c937443f2f6d47fc0d38801552f24bbacd892a624c6c5fc3643</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsNRe_AULXrxEZz-TeKulVaHgRc9lutmkW5JszW4o_fcu-IF4mhfm4RnmJeSawR0DUd5X0O2AcSbxjEw4KJZpodT5b5b5JZmFsAcAJqSCAibkNKcdNr2NztDoD771jTPYUteHscXoh5RoPPqscp3tg_N9Wi7HRcUfHX-gjcM-0gYP9Ojijg5-O4b4IzpRbDCJ4p8TAyZJTJpwRS5qbIOdfc8peV8t3xbP2fr16WUxX2cNVyJmsjICrRLWijyXphS5lKLmta5kXhuoRFEAU4rXXG63aKqi5Ki5NNqo2ggtxZTcfnkPg_8YbYibzgVj2xZ768ew4Rp46kmXZUJv_qF7Pw7p40QpEDkHrZj4BLt-bnc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503720651</pqid></control><display><type>article</type><title>A magnetic topological insulator in two-dimensional EuCd2Bi2: giant gap with robust topology against magnetic transitions</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wang, Hao ; Mao, Ning ; Hu, Xiangting ; Dai, Ying ; Huang, Baibiao ; Niu, Chengwang</creator><creatorcontrib>Wang, Hao ; Mao, Ning ; Hu, Xiangting ; Dai, Ying ; Huang, Baibiao ; Niu, Chengwang</creatorcontrib><description>Magnetic topological states open up exciting opportunities for exploring fundamental topological quantum physics and innovative design of topological spintronics devices. However, the nontrivial topologies, for most known magnetic topological states, are usually associated with and may be heavily deformed by fragile magnetism. Here, using a tight-binding model and first-principles calculations, we demonstrate that a highly robust magnetic topological insulator phase, which remains intact under both ferromagnetic and antiferromagnetic configurations, can emerge in two-dimensional EuCd2Bi2 quintuple layers. Because of spin–orbital coupling, an inverted gap with intrinsic band inversions occuring simultaneously for up and down spin channels is obtained, accompanied by a nonzero spin Chern number [Formula Omitted] and a pair of gapless edge states, and remarkably the magnitude of the nontrivial band gap for EuCd2Bi2 reaches as much as 750 meV. Moreover, the robustness of the magnetic TI phase is further confirmed by rotating the magnetization directions, indicating that EuCd2Bi2 represents a promising material for understanding and utilizing the topological insulating states in two-dimensional spin–orbit magnets.</description><identifier>ISSN: 2051-6347</identifier><identifier>EISSN: 2051-6355</identifier><identifier>DOI: 10.1039/d0mh01214a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Antiferromagnetism ; Ferromagnetism ; First principles ; Inversions ; Magnetic transitions ; Magnetism ; Magnets ; Quantum theory ; Robustness ; Spintronics ; Topological insulators ; Topology</subject><ispartof>Materials horizons, 2021-03, Vol.8 (3), p.956-961</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Mao, Ning</creatorcontrib><creatorcontrib>Hu, Xiangting</creatorcontrib><creatorcontrib>Dai, Ying</creatorcontrib><creatorcontrib>Huang, Baibiao</creatorcontrib><creatorcontrib>Niu, Chengwang</creatorcontrib><title>A magnetic topological insulator in two-dimensional EuCd2Bi2: giant gap with robust topology against magnetic transitions</title><title>Materials horizons</title><description>Magnetic topological states open up exciting opportunities for exploring fundamental topological quantum physics and innovative design of topological spintronics devices. However, the nontrivial topologies, for most known magnetic topological states, are usually associated with and may be heavily deformed by fragile magnetism. Here, using a tight-binding model and first-principles calculations, we demonstrate that a highly robust magnetic topological insulator phase, which remains intact under both ferromagnetic and antiferromagnetic configurations, can emerge in two-dimensional EuCd2Bi2 quintuple layers. Because of spin–orbital coupling, an inverted gap with intrinsic band inversions occuring simultaneously for up and down spin channels is obtained, accompanied by a nonzero spin Chern number [Formula Omitted] and a pair of gapless edge states, and remarkably the magnitude of the nontrivial band gap for EuCd2Bi2 reaches as much as 750 meV. Moreover, the robustness of the magnetic TI phase is further confirmed by rotating the magnetization directions, indicating that EuCd2Bi2 represents a promising material for understanding and utilizing the topological insulating states in two-dimensional spin–orbit magnets.</description><subject>Antiferromagnetism</subject><subject>Ferromagnetism</subject><subject>First principles</subject><subject>Inversions</subject><subject>Magnetic transitions</subject><subject>Magnetism</subject><subject>Magnets</subject><subject>Quantum theory</subject><subject>Robustness</subject><subject>Spintronics</subject><subject>Topological insulators</subject><subject>Topology</subject><issn>2051-6347</issn><issn>2051-6355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRsNRe_AULXrxEZz-TeKulVaHgRc9lutmkW5JszW4o_fcu-IF4mhfm4RnmJeSawR0DUd5X0O2AcSbxjEw4KJZpodT5b5b5JZmFsAcAJqSCAibkNKcdNr2NztDoD771jTPYUteHscXoh5RoPPqscp3tg_N9Wi7HRcUfHX-gjcM-0gYP9Ojijg5-O4b4IzpRbDCJ4p8TAyZJTJpwRS5qbIOdfc8peV8t3xbP2fr16WUxX2cNVyJmsjICrRLWijyXphS5lKLmta5kXhuoRFEAU4rXXG63aKqi5Ki5NNqo2ggtxZTcfnkPg_8YbYibzgVj2xZ768ew4Rp46kmXZUJv_qF7Pw7p40QpEDkHrZj4BLt-bnc</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Wang, Hao</creator><creator>Mao, Ning</creator><creator>Hu, Xiangting</creator><creator>Dai, Ying</creator><creator>Huang, Baibiao</creator><creator>Niu, Chengwang</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20210301</creationdate><title>A magnetic topological insulator in two-dimensional EuCd2Bi2: giant gap with robust topology against magnetic transitions</title><author>Wang, Hao ; Mao, Ning ; Hu, Xiangting ; Dai, Ying ; Huang, Baibiao ; Niu, Chengwang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g253t-4dc3ae53ee3774c937443f2f6d47fc0d38801552f24bbacd892a624c6c5fc3643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antiferromagnetism</topic><topic>Ferromagnetism</topic><topic>First principles</topic><topic>Inversions</topic><topic>Magnetic transitions</topic><topic>Magnetism</topic><topic>Magnets</topic><topic>Quantum theory</topic><topic>Robustness</topic><topic>Spintronics</topic><topic>Topological insulators</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Mao, Ning</creatorcontrib><creatorcontrib>Hu, Xiangting</creatorcontrib><creatorcontrib>Dai, Ying</creatorcontrib><creatorcontrib>Huang, Baibiao</creatorcontrib><creatorcontrib>Niu, Chengwang</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Materials horizons</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hao</au><au>Mao, Ning</au><au>Hu, Xiangting</au><au>Dai, Ying</au><au>Huang, Baibiao</au><au>Niu, Chengwang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A magnetic topological insulator in two-dimensional EuCd2Bi2: giant gap with robust topology against magnetic transitions</atitle><jtitle>Materials horizons</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>8</volume><issue>3</issue><spage>956</spage><epage>961</epage><pages>956-961</pages><issn>2051-6347</issn><eissn>2051-6355</eissn><abstract>Magnetic topological states open up exciting opportunities for exploring fundamental topological quantum physics and innovative design of topological spintronics devices. However, the nontrivial topologies, for most known magnetic topological states, are usually associated with and may be heavily deformed by fragile magnetism. Here, using a tight-binding model and first-principles calculations, we demonstrate that a highly robust magnetic topological insulator phase, which remains intact under both ferromagnetic and antiferromagnetic configurations, can emerge in two-dimensional EuCd2Bi2 quintuple layers. Because of spin–orbital coupling, an inverted gap with intrinsic band inversions occuring simultaneously for up and down spin channels is obtained, accompanied by a nonzero spin Chern number [Formula Omitted] and a pair of gapless edge states, and remarkably the magnitude of the nontrivial band gap for EuCd2Bi2 reaches as much as 750 meV. Moreover, the robustness of the magnetic TI phase is further confirmed by rotating the magnetization directions, indicating that EuCd2Bi2 represents a promising material for understanding and utilizing the topological insulating states in two-dimensional spin–orbit magnets.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0mh01214a</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2051-6347
ispartof Materials horizons, 2021-03, Vol.8 (3), p.956-961
issn 2051-6347
2051-6355
language eng
recordid cdi_proquest_miscellaneous_2602635699
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Antiferromagnetism
Ferromagnetism
First principles
Inversions
Magnetic transitions
Magnetism
Magnets
Quantum theory
Robustness
Spintronics
Topological insulators
Topology
title A magnetic topological insulator in two-dimensional EuCd2Bi2: giant gap with robust topology against magnetic transitions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A35%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20magnetic%20topological%20insulator%20in%20two-dimensional%20EuCd2Bi2:%20giant%20gap%20with%20robust%20topology%20against%20magnetic%20transitions&rft.jtitle=Materials%20horizons&rft.au=Wang,%20Hao&rft.date=2021-03-01&rft.volume=8&rft.issue=3&rft.spage=956&rft.epage=961&rft.pages=956-961&rft.issn=2051-6347&rft.eissn=2051-6355&rft_id=info:doi/10.1039/d0mh01214a&rft_dat=%3Cproquest%3E2503720651%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503720651&rft_id=info:pmid/&rfr_iscdi=true