In situ identification of the electrocatalytic water oxidation behavior of a nickel-based metal–organic framework nanoarray

Metal–organic frameworks (MOFs) have been identified as one of the promising electrocatalysts for the oxygen evolution reaction (OER). However, direct observation of the electrocatalytic behavior of MOF-based electrocatalysts remains extremely challenging, which is of great significance to understan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials horizons 2021-02, Vol.8 (2), p.556-564
Hauptverfasser: Cheng, Fanpeng, Li, Zhongjian, Wang, Lin, Yang, Bin, Lu, Jianguo, Lei, Lecheng, Ma, Tianyi, Hou, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 564
container_issue 2
container_start_page 556
container_title Materials horizons
container_volume 8
creator Cheng, Fanpeng
Li, Zhongjian
Wang, Lin
Yang, Bin
Lu, Jianguo
Lei, Lecheng
Ma, Tianyi
Hou, Yang
description Metal–organic frameworks (MOFs) have been identified as one of the promising electrocatalysts for the oxygen evolution reaction (OER). However, direct observation of the electrocatalytic behavior of MOF-based electrocatalysts remains extremely challenging, which is of great significance to understand their electrocatalytic mechanism. Herein, we developed a vertically oriented Ni-based MOF nanosheet array doped with 2.09 wt% Ce (denoted as Ce–NiBDC/OG). Ce–NiBDC/OG displayed a low overpotential of 265 mV to deliver a 10 mA cm −2 current density for the OER. In situ spectroscopy and operando microscopy visualized the phase transformation behavior of Ce–NiBDC/OG to Ce-doped NiOOH induced by electrochemical activation, which was regarded as the real active site. Mechanistic studies revealed that, for the Ce–NiBDC/OG-derived catalyst, the doping of Ce species in NiOOH significantly increased the adsorption of *OH, and further reduced the energy barriers of the rate-determining step (*OH→*O).
doi_str_mv 10.1039/d0mh01757d
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2602635169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2602635169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-7154a39f4bec0bf77fb29d138376653d5546007498b8b6fa49c0b15ea20e79163</originalsourceid><addsrcrecordid>eNpdkc9O3DAQxqOqSCDKhSewxAVVCh3H_-JjBS27EhUXOEeTZNw1JDG1vd3uAanvwBvyJAS26oHTjGZ-3-jTfEVxzOGMg7BfehhXwI0y_YfioALFSy2U-vi_l2a_OErpDgC4kApqOCgelxNLPq-Z72nK3vkOsw8TC47lFTEaqMsxzEMcttl3bIOZIgt_fL_jWlrhbx_iqwDZ5Lt7GsoWE_VspFn0_PcpxJ84L5iLONImxHs24RQwRtx-KvYcDomO_tXD4vb7t5vzRXl1fbk8_3pVdsKqXBquJArrZEsdtM4Y11a256IWRmsleqWkBjDS1m3daofSzhhXhBWQsVyLw-J0d_chhl9rSrkZfepoGHCisE5NpaGaf8W1ndGTd-hdWMdpdtdUsraVtlzWM_V5R3UxpBTJNQ_Rjxi3DYfmNYzmAn4s3sK4EC_zYH47</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489269148</pqid></control><display><type>article</type><title>In situ identification of the electrocatalytic water oxidation behavior of a nickel-based metal–organic framework nanoarray</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Cheng, Fanpeng ; Li, Zhongjian ; Wang, Lin ; Yang, Bin ; Lu, Jianguo ; Lei, Lecheng ; Ma, Tianyi ; Hou, Yang</creator><creatorcontrib>Cheng, Fanpeng ; Li, Zhongjian ; Wang, Lin ; Yang, Bin ; Lu, Jianguo ; Lei, Lecheng ; Ma, Tianyi ; Hou, Yang</creatorcontrib><description>Metal–organic frameworks (MOFs) have been identified as one of the promising electrocatalysts for the oxygen evolution reaction (OER). However, direct observation of the electrocatalytic behavior of MOF-based electrocatalysts remains extremely challenging, which is of great significance to understand their electrocatalytic mechanism. Herein, we developed a vertically oriented Ni-based MOF nanosheet array doped with 2.09 wt% Ce (denoted as Ce–NiBDC/OG). Ce–NiBDC/OG displayed a low overpotential of 265 mV to deliver a 10 mA cm −2 current density for the OER. In situ spectroscopy and operando microscopy visualized the phase transformation behavior of Ce–NiBDC/OG to Ce-doped NiOOH induced by electrochemical activation, which was regarded as the real active site. Mechanistic studies revealed that, for the Ce–NiBDC/OG-derived catalyst, the doping of Ce species in NiOOH significantly increased the adsorption of *OH, and further reduced the energy barriers of the rate-determining step (*OH→*O).</description><identifier>ISSN: 2051-6347</identifier><identifier>EISSN: 2051-6355</identifier><identifier>DOI: 10.1039/d0mh01757d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Cerium ; Electrocatalysts ; Electrochemical activation ; Metal-organic frameworks ; Nickel ; Oxidation ; Oxygen evolution reactions ; Phase transitions</subject><ispartof>Materials horizons, 2021-02, Vol.8 (2), p.556-564</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-7154a39f4bec0bf77fb29d138376653d5546007498b8b6fa49c0b15ea20e79163</citedby><cites>FETCH-LOGICAL-c395t-7154a39f4bec0bf77fb29d138376653d5546007498b8b6fa49c0b15ea20e79163</cites><orcidid>0000-0001-9795-8503 ; 0000-0002-3685-381X ; 0000-0001-6183-6336 ; 0000-0002-1042-8700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cheng, Fanpeng</creatorcontrib><creatorcontrib>Li, Zhongjian</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Yang, Bin</creatorcontrib><creatorcontrib>Lu, Jianguo</creatorcontrib><creatorcontrib>Lei, Lecheng</creatorcontrib><creatorcontrib>Ma, Tianyi</creatorcontrib><creatorcontrib>Hou, Yang</creatorcontrib><title>In situ identification of the electrocatalytic water oxidation behavior of a nickel-based metal–organic framework nanoarray</title><title>Materials horizons</title><description>Metal–organic frameworks (MOFs) have been identified as one of the promising electrocatalysts for the oxygen evolution reaction (OER). However, direct observation of the electrocatalytic behavior of MOF-based electrocatalysts remains extremely challenging, which is of great significance to understand their electrocatalytic mechanism. Herein, we developed a vertically oriented Ni-based MOF nanosheet array doped with 2.09 wt% Ce (denoted as Ce–NiBDC/OG). Ce–NiBDC/OG displayed a low overpotential of 265 mV to deliver a 10 mA cm −2 current density for the OER. In situ spectroscopy and operando microscopy visualized the phase transformation behavior of Ce–NiBDC/OG to Ce-doped NiOOH induced by electrochemical activation, which was regarded as the real active site. Mechanistic studies revealed that, for the Ce–NiBDC/OG-derived catalyst, the doping of Ce species in NiOOH significantly increased the adsorption of *OH, and further reduced the energy barriers of the rate-determining step (*OH→*O).</description><subject>Cerium</subject><subject>Electrocatalysts</subject><subject>Electrochemical activation</subject><subject>Metal-organic frameworks</subject><subject>Nickel</subject><subject>Oxidation</subject><subject>Oxygen evolution reactions</subject><subject>Phase transitions</subject><issn>2051-6347</issn><issn>2051-6355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkc9O3DAQxqOqSCDKhSewxAVVCh3H_-JjBS27EhUXOEeTZNw1JDG1vd3uAanvwBvyJAS26oHTjGZ-3-jTfEVxzOGMg7BfehhXwI0y_YfioALFSy2U-vi_l2a_OErpDgC4kApqOCgelxNLPq-Z72nK3vkOsw8TC47lFTEaqMsxzEMcttl3bIOZIgt_fL_jWlrhbx_iqwDZ5Lt7GsoWE_VspFn0_PcpxJ84L5iLONImxHs24RQwRtx-KvYcDomO_tXD4vb7t5vzRXl1fbk8_3pVdsKqXBquJArrZEsdtM4Y11a256IWRmsleqWkBjDS1m3daofSzhhXhBWQsVyLw-J0d_chhl9rSrkZfepoGHCisE5NpaGaf8W1ndGTd-hdWMdpdtdUsraVtlzWM_V5R3UxpBTJNQ_Rjxi3DYfmNYzmAn4s3sK4EC_zYH47</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Cheng, Fanpeng</creator><creator>Li, Zhongjian</creator><creator>Wang, Lin</creator><creator>Yang, Bin</creator><creator>Lu, Jianguo</creator><creator>Lei, Lecheng</creator><creator>Ma, Tianyi</creator><creator>Hou, Yang</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9795-8503</orcidid><orcidid>https://orcid.org/0000-0002-3685-381X</orcidid><orcidid>https://orcid.org/0000-0001-6183-6336</orcidid><orcidid>https://orcid.org/0000-0002-1042-8700</orcidid></search><sort><creationdate>20210201</creationdate><title>In situ identification of the electrocatalytic water oxidation behavior of a nickel-based metal–organic framework nanoarray</title><author>Cheng, Fanpeng ; Li, Zhongjian ; Wang, Lin ; Yang, Bin ; Lu, Jianguo ; Lei, Lecheng ; Ma, Tianyi ; Hou, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-7154a39f4bec0bf77fb29d138376653d5546007498b8b6fa49c0b15ea20e79163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cerium</topic><topic>Electrocatalysts</topic><topic>Electrochemical activation</topic><topic>Metal-organic frameworks</topic><topic>Nickel</topic><topic>Oxidation</topic><topic>Oxygen evolution reactions</topic><topic>Phase transitions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Fanpeng</creatorcontrib><creatorcontrib>Li, Zhongjian</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Yang, Bin</creatorcontrib><creatorcontrib>Lu, Jianguo</creatorcontrib><creatorcontrib>Lei, Lecheng</creatorcontrib><creatorcontrib>Ma, Tianyi</creatorcontrib><creatorcontrib>Hou, Yang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Materials horizons</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Fanpeng</au><au>Li, Zhongjian</au><au>Wang, Lin</au><au>Yang, Bin</au><au>Lu, Jianguo</au><au>Lei, Lecheng</au><au>Ma, Tianyi</au><au>Hou, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ identification of the electrocatalytic water oxidation behavior of a nickel-based metal–organic framework nanoarray</atitle><jtitle>Materials horizons</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>8</volume><issue>2</issue><spage>556</spage><epage>564</epage><pages>556-564</pages><issn>2051-6347</issn><eissn>2051-6355</eissn><abstract>Metal–organic frameworks (MOFs) have been identified as one of the promising electrocatalysts for the oxygen evolution reaction (OER). However, direct observation of the electrocatalytic behavior of MOF-based electrocatalysts remains extremely challenging, which is of great significance to understand their electrocatalytic mechanism. Herein, we developed a vertically oriented Ni-based MOF nanosheet array doped with 2.09 wt% Ce (denoted as Ce–NiBDC/OG). Ce–NiBDC/OG displayed a low overpotential of 265 mV to deliver a 10 mA cm −2 current density for the OER. In situ spectroscopy and operando microscopy visualized the phase transformation behavior of Ce–NiBDC/OG to Ce-doped NiOOH induced by electrochemical activation, which was regarded as the real active site. Mechanistic studies revealed that, for the Ce–NiBDC/OG-derived catalyst, the doping of Ce species in NiOOH significantly increased the adsorption of *OH, and further reduced the energy barriers of the rate-determining step (*OH→*O).</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0mh01757d</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9795-8503</orcidid><orcidid>https://orcid.org/0000-0002-3685-381X</orcidid><orcidid>https://orcid.org/0000-0001-6183-6336</orcidid><orcidid>https://orcid.org/0000-0002-1042-8700</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2051-6347
ispartof Materials horizons, 2021-02, Vol.8 (2), p.556-564
issn 2051-6347
2051-6355
language eng
recordid cdi_proquest_miscellaneous_2602635169
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Cerium
Electrocatalysts
Electrochemical activation
Metal-organic frameworks
Nickel
Oxidation
Oxygen evolution reactions
Phase transitions
title In situ identification of the electrocatalytic water oxidation behavior of a nickel-based metal–organic framework nanoarray
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A43%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20identification%20of%20the%20electrocatalytic%20water%20oxidation%20behavior%20of%20a%20nickel-based%20metal%E2%80%93organic%20framework%20nanoarray&rft.jtitle=Materials%20horizons&rft.au=Cheng,%20Fanpeng&rft.date=2021-02-01&rft.volume=8&rft.issue=2&rft.spage=556&rft.epage=564&rft.pages=556-564&rft.issn=2051-6347&rft.eissn=2051-6355&rft_id=info:doi/10.1039/d0mh01757d&rft_dat=%3Cproquest_cross%3E2602635169%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489269148&rft_id=info:pmid/&rfr_iscdi=true