Bandgap Shrinkage and Charge Transfer in 2D Layered SnS2 Doped with V for Photocatalytic Efficiency Improvement
Effects of electronic and atomic structures of V‐doped 2D layered SnS2 are studied using X‐ray spectroscopy for the development of photocatalytic/photovoltaic applications. Extended X‐ray absorption fine structure measurements at V K‐edge reveal the presence of VO and VS bonds which form the inter...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2022-01, Vol.18 (2), p.e2105076-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | e2105076 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 18 |
creator | Shelke, Abhijeet R. Wang, Hsiao‐Tsu Chiou, Jau‐Wern Shown, Indrajit Sabbah, Amr Chen, Kuang‐Hung Teng, Shu‐Ang Lin, I‐An Lee, Chi‐Cheng Hsueh, Hung‐Chung Liang, Yu‐Hui Du, Chao‐Hung Yadav, Priyanka L. Ray, Sekhar C. Hsieh, Shang‐Hsien Pao, Chih‐Wen Tsai, Huang‐Ming Chen, Chia‐Hao Chen, Kuei‐Hsien Chen, Li‐Chyong Pong, Way‐Faung |
description | Effects of electronic and atomic structures of V‐doped 2D layered SnS2 are studied using X‐ray spectroscopy for the development of photocatalytic/photovoltaic applications. Extended X‐ray absorption fine structure measurements at V K‐edge reveal the presence of VO and VS bonds which form the intercalation of tetrahedral OVS sites in the van der Waals (vdW) gap of SnS2 layers. X‐ray absorption near‐edge structure (XANES) reveals not only valence state of V dopant in SnS2 is ≈4+ but also the charge transfer (CT) from V to ligands, supported by V Lα,β resonant inelastic X‐ray scattering. These results suggest V doping produces extra interlayer covalent interactions and additional conducting channels, which increase the electronic conductivity and CT. This gives rapid transport of photo‐excited electrons and effective carrier separation in layered SnS2. Additionally, valence‐band photoemission spectra and S K‐edge XANES indicate that the density of states near/at valence‐band maximum is shifted to lower binding energy in V‐doped SnS2 compare to pristine SnS2 and exhibits band gap shrinkage. These findings support first‐principles density functional theory calculations of the interstitially tetrahedral OVS site intercalated in the vdW gap, highlighting the CT from V to ligands in V‐doped SnS2.
The interstitially tetrahedral O–V–S site in the vdW gap of V‐doped 2D SnS2 establishes the origin of the charge transfer mechanism between metal ion V4+ 3d and ligand O2‐ 2p/S2‐ 3p states and the decrease in the band gap by studying synchrotron‐based techniques and first‐principles density functional theory. |
doi_str_mv | 10.1002/smll.202105076 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2600287282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2600287282</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2666-e00ae779e18b46953714d3385936a62db0862e6e327c9be1e7e0001a20007c973</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEqWwMltiYWnxR2vHI5QClYJASmG13OTSuCROcFKq_HtcFXVguXvv9NyHXoSuKRlTQthdW5XlmBFGyZRIcYIGVFA-EhFTp0dNyTm6aNsNIZyyiRyg-sG4bG0anBTeui-zBhwaeFYYH-TSG9fm4LF1mD3i2PTgIcOJSxh-rJsgd7Yr8CfOa4_fi7qrU9OZsu9siud5blMLLu3xomp8_QMVuO4SneWmbOHqLw_Rx9N8OXsZxW_Pi9l9PGqYEGIEhBiQUgGNVhOhplzSScZ5NFVcGMGyFYkEAwGcyVStgIIME4QaFmLoSD5Et4e94fL3FtpOV7ZNoSyNg3rbaiaCZZFkEQvozT90U2-9C98FiioStikRKHWgdraEXjfeVsb3mhK9N1_vzddH83XyGsfHiv8CXq948g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619097396</pqid></control><display><type>article</type><title>Bandgap Shrinkage and Charge Transfer in 2D Layered SnS2 Doped with V for Photocatalytic Efficiency Improvement</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shelke, Abhijeet R. ; Wang, Hsiao‐Tsu ; Chiou, Jau‐Wern ; Shown, Indrajit ; Sabbah, Amr ; Chen, Kuang‐Hung ; Teng, Shu‐Ang ; Lin, I‐An ; Lee, Chi‐Cheng ; Hsueh, Hung‐Chung ; Liang, Yu‐Hui ; Du, Chao‐Hung ; Yadav, Priyanka L. ; Ray, Sekhar C. ; Hsieh, Shang‐Hsien ; Pao, Chih‐Wen ; Tsai, Huang‐Ming ; Chen, Chia‐Hao ; Chen, Kuei‐Hsien ; Chen, Li‐Chyong ; Pong, Way‐Faung</creator><creatorcontrib>Shelke, Abhijeet R. ; Wang, Hsiao‐Tsu ; Chiou, Jau‐Wern ; Shown, Indrajit ; Sabbah, Amr ; Chen, Kuang‐Hung ; Teng, Shu‐Ang ; Lin, I‐An ; Lee, Chi‐Cheng ; Hsueh, Hung‐Chung ; Liang, Yu‐Hui ; Du, Chao‐Hung ; Yadav, Priyanka L. ; Ray, Sekhar C. ; Hsieh, Shang‐Hsien ; Pao, Chih‐Wen ; Tsai, Huang‐Ming ; Chen, Chia‐Hao ; Chen, Kuei‐Hsien ; Chen, Li‐Chyong ; Pong, Way‐Faung</creatorcontrib><description>Effects of electronic and atomic structures of V‐doped 2D layered SnS2 are studied using X‐ray spectroscopy for the development of photocatalytic/photovoltaic applications. Extended X‐ray absorption fine structure measurements at V K‐edge reveal the presence of VO and VS bonds which form the intercalation of tetrahedral OVS sites in the van der Waals (vdW) gap of SnS2 layers. X‐ray absorption near‐edge structure (XANES) reveals not only valence state of V dopant in SnS2 is ≈4+ but also the charge transfer (CT) from V to ligands, supported by V Lα,β resonant inelastic X‐ray scattering. These results suggest V doping produces extra interlayer covalent interactions and additional conducting channels, which increase the electronic conductivity and CT. This gives rapid transport of photo‐excited electrons and effective carrier separation in layered SnS2. Additionally, valence‐band photoemission spectra and S K‐edge XANES indicate that the density of states near/at valence‐band maximum is shifted to lower binding energy in V‐doped SnS2 compare to pristine SnS2 and exhibits band gap shrinkage. These findings support first‐principles density functional theory calculations of the interstitially tetrahedral OVS site intercalated in the vdW gap, highlighting the CT from V to ligands in V‐doped SnS2.
The interstitially tetrahedral O–V–S site in the vdW gap of V‐doped 2D SnS2 establishes the origin of the charge transfer mechanism between metal ion V4+ 3d and ligand O2‐ 2p/S2‐ 3p states and the decrease in the band gap by studying synchrotron‐based techniques and first‐principles density functional theory.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202105076</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Absorption ; band‐gap shrinkage ; Charge transfer ; Density functional theory ; Energy gap ; Fine structure ; Inelastic scattering ; Interlayers ; Ligands ; Nanotechnology ; Photocatalysis ; Photoelectric emission ; resonant inelastic X‐ray scattering ; Shrinkage ; Spectrum analysis ; Tin disulfide ; Valence ; V‐doped 2D layered SnS 2 ; X‐ray absorption</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2022-01, Vol.18 (2), p.e2105076-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2830-8771 ; 0000-0002-1851-7564 ; 0000-0003-1249-9462</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202105076$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202105076$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Shelke, Abhijeet R.</creatorcontrib><creatorcontrib>Wang, Hsiao‐Tsu</creatorcontrib><creatorcontrib>Chiou, Jau‐Wern</creatorcontrib><creatorcontrib>Shown, Indrajit</creatorcontrib><creatorcontrib>Sabbah, Amr</creatorcontrib><creatorcontrib>Chen, Kuang‐Hung</creatorcontrib><creatorcontrib>Teng, Shu‐Ang</creatorcontrib><creatorcontrib>Lin, I‐An</creatorcontrib><creatorcontrib>Lee, Chi‐Cheng</creatorcontrib><creatorcontrib>Hsueh, Hung‐Chung</creatorcontrib><creatorcontrib>Liang, Yu‐Hui</creatorcontrib><creatorcontrib>Du, Chao‐Hung</creatorcontrib><creatorcontrib>Yadav, Priyanka L.</creatorcontrib><creatorcontrib>Ray, Sekhar C.</creatorcontrib><creatorcontrib>Hsieh, Shang‐Hsien</creatorcontrib><creatorcontrib>Pao, Chih‐Wen</creatorcontrib><creatorcontrib>Tsai, Huang‐Ming</creatorcontrib><creatorcontrib>Chen, Chia‐Hao</creatorcontrib><creatorcontrib>Chen, Kuei‐Hsien</creatorcontrib><creatorcontrib>Chen, Li‐Chyong</creatorcontrib><creatorcontrib>Pong, Way‐Faung</creatorcontrib><title>Bandgap Shrinkage and Charge Transfer in 2D Layered SnS2 Doped with V for Photocatalytic Efficiency Improvement</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Effects of electronic and atomic structures of V‐doped 2D layered SnS2 are studied using X‐ray spectroscopy for the development of photocatalytic/photovoltaic applications. Extended X‐ray absorption fine structure measurements at V K‐edge reveal the presence of VO and VS bonds which form the intercalation of tetrahedral OVS sites in the van der Waals (vdW) gap of SnS2 layers. X‐ray absorption near‐edge structure (XANES) reveals not only valence state of V dopant in SnS2 is ≈4+ but also the charge transfer (CT) from V to ligands, supported by V Lα,β resonant inelastic X‐ray scattering. These results suggest V doping produces extra interlayer covalent interactions and additional conducting channels, which increase the electronic conductivity and CT. This gives rapid transport of photo‐excited electrons and effective carrier separation in layered SnS2. Additionally, valence‐band photoemission spectra and S K‐edge XANES indicate that the density of states near/at valence‐band maximum is shifted to lower binding energy in V‐doped SnS2 compare to pristine SnS2 and exhibits band gap shrinkage. These findings support first‐principles density functional theory calculations of the interstitially tetrahedral OVS site intercalated in the vdW gap, highlighting the CT from V to ligands in V‐doped SnS2.
The interstitially tetrahedral O–V–S site in the vdW gap of V‐doped 2D SnS2 establishes the origin of the charge transfer mechanism between metal ion V4+ 3d and ligand O2‐ 2p/S2‐ 3p states and the decrease in the band gap by studying synchrotron‐based techniques and first‐principles density functional theory.</description><subject>Absorption</subject><subject>band‐gap shrinkage</subject><subject>Charge transfer</subject><subject>Density functional theory</subject><subject>Energy gap</subject><subject>Fine structure</subject><subject>Inelastic scattering</subject><subject>Interlayers</subject><subject>Ligands</subject><subject>Nanotechnology</subject><subject>Photocatalysis</subject><subject>Photoelectric emission</subject><subject>resonant inelastic X‐ray scattering</subject><subject>Shrinkage</subject><subject>Spectrum analysis</subject><subject>Tin disulfide</subject><subject>Valence</subject><subject>V‐doped 2D layered SnS 2</subject><subject>X‐ray absorption</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkD1PwzAQhi0EEqWwMltiYWnxR2vHI5QClYJASmG13OTSuCROcFKq_HtcFXVguXvv9NyHXoSuKRlTQthdW5XlmBFGyZRIcYIGVFA-EhFTp0dNyTm6aNsNIZyyiRyg-sG4bG0anBTeui-zBhwaeFYYH-TSG9fm4LF1mD3i2PTgIcOJSxh-rJsgd7Yr8CfOa4_fi7qrU9OZsu9siud5blMLLu3xomp8_QMVuO4SneWmbOHqLw_Rx9N8OXsZxW_Pi9l9PGqYEGIEhBiQUgGNVhOhplzSScZ5NFVcGMGyFYkEAwGcyVStgIIME4QaFmLoSD5Et4e94fL3FtpOV7ZNoSyNg3rbaiaCZZFkEQvozT90U2-9C98FiioStikRKHWgdraEXjfeVsb3mhK9N1_vzddH83XyGsfHiv8CXq948g</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Shelke, Abhijeet R.</creator><creator>Wang, Hsiao‐Tsu</creator><creator>Chiou, Jau‐Wern</creator><creator>Shown, Indrajit</creator><creator>Sabbah, Amr</creator><creator>Chen, Kuang‐Hung</creator><creator>Teng, Shu‐Ang</creator><creator>Lin, I‐An</creator><creator>Lee, Chi‐Cheng</creator><creator>Hsueh, Hung‐Chung</creator><creator>Liang, Yu‐Hui</creator><creator>Du, Chao‐Hung</creator><creator>Yadav, Priyanka L.</creator><creator>Ray, Sekhar C.</creator><creator>Hsieh, Shang‐Hsien</creator><creator>Pao, Chih‐Wen</creator><creator>Tsai, Huang‐Ming</creator><creator>Chen, Chia‐Hao</creator><creator>Chen, Kuei‐Hsien</creator><creator>Chen, Li‐Chyong</creator><creator>Pong, Way‐Faung</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2830-8771</orcidid><orcidid>https://orcid.org/0000-0002-1851-7564</orcidid><orcidid>https://orcid.org/0000-0003-1249-9462</orcidid></search><sort><creationdate>20220101</creationdate><title>Bandgap Shrinkage and Charge Transfer in 2D Layered SnS2 Doped with V for Photocatalytic Efficiency Improvement</title><author>Shelke, Abhijeet R. ; Wang, Hsiao‐Tsu ; Chiou, Jau‐Wern ; Shown, Indrajit ; Sabbah, Amr ; Chen, Kuang‐Hung ; Teng, Shu‐Ang ; Lin, I‐An ; Lee, Chi‐Cheng ; Hsueh, Hung‐Chung ; Liang, Yu‐Hui ; Du, Chao‐Hung ; Yadav, Priyanka L. ; Ray, Sekhar C. ; Hsieh, Shang‐Hsien ; Pao, Chih‐Wen ; Tsai, Huang‐Ming ; Chen, Chia‐Hao ; Chen, Kuei‐Hsien ; Chen, Li‐Chyong ; Pong, Way‐Faung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2666-e00ae779e18b46953714d3385936a62db0862e6e327c9be1e7e0001a20007c973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorption</topic><topic>band‐gap shrinkage</topic><topic>Charge transfer</topic><topic>Density functional theory</topic><topic>Energy gap</topic><topic>Fine structure</topic><topic>Inelastic scattering</topic><topic>Interlayers</topic><topic>Ligands</topic><topic>Nanotechnology</topic><topic>Photocatalysis</topic><topic>Photoelectric emission</topic><topic>resonant inelastic X‐ray scattering</topic><topic>Shrinkage</topic><topic>Spectrum analysis</topic><topic>Tin disulfide</topic><topic>Valence</topic><topic>V‐doped 2D layered SnS 2</topic><topic>X‐ray absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shelke, Abhijeet R.</creatorcontrib><creatorcontrib>Wang, Hsiao‐Tsu</creatorcontrib><creatorcontrib>Chiou, Jau‐Wern</creatorcontrib><creatorcontrib>Shown, Indrajit</creatorcontrib><creatorcontrib>Sabbah, Amr</creatorcontrib><creatorcontrib>Chen, Kuang‐Hung</creatorcontrib><creatorcontrib>Teng, Shu‐Ang</creatorcontrib><creatorcontrib>Lin, I‐An</creatorcontrib><creatorcontrib>Lee, Chi‐Cheng</creatorcontrib><creatorcontrib>Hsueh, Hung‐Chung</creatorcontrib><creatorcontrib>Liang, Yu‐Hui</creatorcontrib><creatorcontrib>Du, Chao‐Hung</creatorcontrib><creatorcontrib>Yadav, Priyanka L.</creatorcontrib><creatorcontrib>Ray, Sekhar C.</creatorcontrib><creatorcontrib>Hsieh, Shang‐Hsien</creatorcontrib><creatorcontrib>Pao, Chih‐Wen</creatorcontrib><creatorcontrib>Tsai, Huang‐Ming</creatorcontrib><creatorcontrib>Chen, Chia‐Hao</creatorcontrib><creatorcontrib>Chen, Kuei‐Hsien</creatorcontrib><creatorcontrib>Chen, Li‐Chyong</creatorcontrib><creatorcontrib>Pong, Way‐Faung</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shelke, Abhijeet R.</au><au>Wang, Hsiao‐Tsu</au><au>Chiou, Jau‐Wern</au><au>Shown, Indrajit</au><au>Sabbah, Amr</au><au>Chen, Kuang‐Hung</au><au>Teng, Shu‐Ang</au><au>Lin, I‐An</au><au>Lee, Chi‐Cheng</au><au>Hsueh, Hung‐Chung</au><au>Liang, Yu‐Hui</au><au>Du, Chao‐Hung</au><au>Yadav, Priyanka L.</au><au>Ray, Sekhar C.</au><au>Hsieh, Shang‐Hsien</au><au>Pao, Chih‐Wen</au><au>Tsai, Huang‐Ming</au><au>Chen, Chia‐Hao</au><au>Chen, Kuei‐Hsien</au><au>Chen, Li‐Chyong</au><au>Pong, Way‐Faung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bandgap Shrinkage and Charge Transfer in 2D Layered SnS2 Doped with V for Photocatalytic Efficiency Improvement</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>18</volume><issue>2</issue><spage>e2105076</spage><epage>n/a</epage><pages>e2105076-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Effects of electronic and atomic structures of V‐doped 2D layered SnS2 are studied using X‐ray spectroscopy for the development of photocatalytic/photovoltaic applications. Extended X‐ray absorption fine structure measurements at V K‐edge reveal the presence of VO and VS bonds which form the intercalation of tetrahedral OVS sites in the van der Waals (vdW) gap of SnS2 layers. X‐ray absorption near‐edge structure (XANES) reveals not only valence state of V dopant in SnS2 is ≈4+ but also the charge transfer (CT) from V to ligands, supported by V Lα,β resonant inelastic X‐ray scattering. These results suggest V doping produces extra interlayer covalent interactions and additional conducting channels, which increase the electronic conductivity and CT. This gives rapid transport of photo‐excited electrons and effective carrier separation in layered SnS2. Additionally, valence‐band photoemission spectra and S K‐edge XANES indicate that the density of states near/at valence‐band maximum is shifted to lower binding energy in V‐doped SnS2 compare to pristine SnS2 and exhibits band gap shrinkage. These findings support first‐principles density functional theory calculations of the interstitially tetrahedral OVS site intercalated in the vdW gap, highlighting the CT from V to ligands in V‐doped SnS2.
The interstitially tetrahedral O–V–S site in the vdW gap of V‐doped 2D SnS2 establishes the origin of the charge transfer mechanism between metal ion V4+ 3d and ligand O2‐ 2p/S2‐ 3p states and the decrease in the band gap by studying synchrotron‐based techniques and first‐principles density functional theory.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202105076</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2830-8771</orcidid><orcidid>https://orcid.org/0000-0002-1851-7564</orcidid><orcidid>https://orcid.org/0000-0003-1249-9462</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2022-01, Vol.18 (2), p.e2105076-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2600287282 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Absorption band‐gap shrinkage Charge transfer Density functional theory Energy gap Fine structure Inelastic scattering Interlayers Ligands Nanotechnology Photocatalysis Photoelectric emission resonant inelastic X‐ray scattering Shrinkage Spectrum analysis Tin disulfide Valence V‐doped 2D layered SnS 2 X‐ray absorption |
title | Bandgap Shrinkage and Charge Transfer in 2D Layered SnS2 Doped with V for Photocatalytic Efficiency Improvement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A11%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bandgap%20Shrinkage%20and%20Charge%20Transfer%20in%202D%20Layered%20SnS2%20Doped%20with%20V%20for%20Photocatalytic%20Efficiency%20Improvement&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Shelke,%20Abhijeet%20R.&rft.date=2022-01-01&rft.volume=18&rft.issue=2&rft.spage=e2105076&rft.epage=n/a&rft.pages=e2105076-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202105076&rft_dat=%3Cproquest_wiley%3E2600287282%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619097396&rft_id=info:pmid/&rfr_iscdi=true |