Fractional-order discontinuous systems with indefinite LKFs: An application to fractional-order neural networks with time delays
In this article, we discuss bipartite fixed-time synchronization for fractional-order signed neural networks with discontinuous activation patterns. The Filippov multi-map is used to convert the fixed-time stability of the fractional-order general solution into the zero solution of the fractional-or...
Gespeichert in:
Veröffentlicht in: | Neural networks 2022-01, Vol.145, p.319-330 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we discuss bipartite fixed-time synchronization for fractional-order signed neural networks with discontinuous activation patterns. The Filippov multi-map is used to convert the fixed-time stability of the fractional-order general solution into the zero solution of the fractional-order differential inclusions. On the Caputo fractional-order derivative, Lyapunov-Krasovskii functional is proved to possess the indefinite fractional derivatives for fixed-time stability of fragmentary discontinuous systems. Furthermore, the fixed-time stability of the fractional-order discontinuous system is achieved as well as an estimate of the new settling time.. The discontinuous controller is designed for the delayed fractional-order discontinuous signed neural networks with antagonistic interactions and new conditions for permanent fixed-time synchronization of these networks with antagonistic interactions are also provided, as well as the settling time for permanent fixed-time synchronization. Two numerical simulation results are presented to demonstrate the effectiveness of the main results |
---|---|
ISSN: | 0893-6080 1879-2782 |
DOI: | 10.1016/j.neunet.2021.10.027 |